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20 Abstract

21 Stress Knowledge Map (SKM, https://skm.nib.si) is a publicly available resource
22 containing two complementary knowledge graphs describing current knowledge of
23 biochemical, signalling, and regulatory molecular interactions in plants: a highly
24 curated model of plant stress signalling (PSS, 543 reactions) and a large comprehensive
25 knowledge network (CKN, 488,390 interactions). Both were constructed by domain
26 experts through systematic curation of diverse literature and database resources. SKM
27 provides a single entrypoint for plant stress response investigations and the related
28 growth tradeoffs. SKM provides interactive exploration of current knowledge. PSS is
29 also formulated as qualitative and quantitative models for systems biology, and thus
30 represents a starting point of a plant digital twin. Here, we describe the features of SKM
31 and show, through two case studies, how it can be used for complex analyses, including
32 systematic hypothesis generation, design of validation experiments, or to gain new
33 insights into experimental observations in plant biology.

34

35 Keywords: knowledge graph, database, plant stress responses, plant signalling, systems biology,
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38 Introduction

39 The already apparent effects of climate change on agriculture (Shukla et al.), the
40 spread of pests into new regions (Garrett, 2013; IPPC Secretariat, 2021), and rapid
41 population growth (UN DESA, 2022) provide immediate challenges to global food
42 security (Steinwand and Ronald, 2020). Projections show that in order to meet 2050
43 demand, an increase in crop production of up to 75% is required (Hunter et al., 2017).
44 This can be achieved with yield improvements through the development of stress
45 resilient crops, a process requiring a holistic understanding of the effect of stressors on
46 plants. The rapid development of modern ‘omics” technologies allows for the
47 generation of large and complex datasets, characterising system wide responses. To
48 understand the biological meaning of these large-scale data sets and generate
49 meaningful hypotheses, contextualisation within current knowledge is needed. We
50 have assembled an integrated resource of plant signalling, Stress Knowledge Map

51 (SKM, https://skm.nib.si), that provides a single, up-to-date entrypoint for plant

52 response investigations.

53 SKM integrates knowledge on plant molecular interactions and stress specific
54 responses from a wide diversity of sources, combining recent discoveries from journal
55 articles with knowledge already existing in resources such as KEGG (Kanehisa et al.,
56 2016), STRING (Szklarczyk et al., 2023), MetaCyc (Caspi et al., 2016), and AraCyc
57 (Mueller et al., 2003). SKM extends other aggregated resources (listed in Supplementary
58 Table 1), including the heterogeneous knowledge graphs of KnetMiner (Hassani-Pak et
59 al., 2021), Biomine Explorer (Podpecan et al., 2019), and ConsensusPathDB (Herwig et

60 al., 2016), in that it allows conversion of biochemical knowledge to diverse
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61 mathematical modelling formalisms and integration with multi-omics experiments,
62 besides allowing interactive exploration of current knowledge that is constantly
63 reproducibly updated. SKM is a versatile resource that assists diverse users, from plant
64 researchers to crop breeders, in investigating current knowledge and contextualising
65 new datasets in existing plant research. A number of tools were developed within the

66 SKM environment to support this, and enable efficient linking to complementary tools.

67 Results

68 SKM is a resource combining two knowledge graphs resulting from the
69 integration of dispersed published information on current biochemical knowledge: the
70 Plant Stress Signalling model (PSS) and the Comprehensive Knowledge Network
71 (CKN) of plant molecular interactions. SKM enables interactive exploration of its
72 contents, and represents a basis for diverse systems biology modelling approaches,

73 from network analysis to dynamical modelling.

74 The Plant Stress Signalling model (PSS)

75 PSS is an ongoing endeavour to assemble an accurate and detailed mechanistic
76 model of plant stress signalling by extracting validated molecular interactions from
77 published resources (Miljkovic et al., 2012; Ram3ak et al., 2018). Currently PSS covers the
78 complete stress response cascade within the plant cell (Fig. 1), initiating with abiotic
79 (heat, drought, and waterlogging) and biotic stressors (extracellular pathogens,
8o intracellular pathogens, and necrotrophs; Layer 1). Perception of these stressors through
81 diverse receptors (Layer 2) initiates Ca2+, ROS, and MAPK signalling cascades, as well

82 as phytohormone biosynthesis and signalling pathways (Layer 3). These translate
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83 perception into a cellular response, resulting in activation of processes which execute
84 protection against stress (Layer 4). Within and across these layers, relevant
85 transcriptional (transcription factors known to act downstream of phytohormones) and
86 posttranscriptional (e.g. smallRNA-transcript regulation known to participate in stress
87 signalling) regulation is included. To capture the relations between stress responses and
88 growth and development, PSS also contains the major known regulators of growth
89 (Target Of Rapamycin (TOR) signalling) all hormonal signalling pathways and major
90 primary metabolism processes. Finally, tuberisation signalling from potato is included

91 as an example for evaluating potential impact on crop yields.

92 PSS is primarily based on the model plant Arabidopsis (Arabidopsis thaliana), and
93 also contains pertinent information from several crop species, most comprehensively
94 potato (Solanum tuberosum). PSS currently includes 1,425 entities and 543 reactions, a
95 substantial update from the preceding model of 212 entities and 112 reactions (Ramsak
96 et al., 2018). PSS entities include genes and gene products (proteins, transcripts,
97 smallRNAs), complexes, metabolites, and triggers of plant stress. Genetic redundancy
98 (Cusack et al., 2021) is incorporated using the concept of functional clusters — groups of
99 genes (possibly across species) that are known to mediate the same function(s).
100 Interactions between these entities include protein-DNA (e.g. transcriptional
101 regulation), smallRNA-transcript, protein-protein interactions, as well as enzymatic
102 catalysis and transport reactions. The majority of these interactions were compiled from
103 peer-reviewed manuscripts with targeted experimental methodology, giving them a
104 high degree of confidence. PSS also contains relevant signalling associated pathways

105 from KEGG (Kanehisa et al., 2016) and AraCyc (Mueller et al., 2003).
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Figure 1. Contents of the Plant Stress Signalling model (PSS) represented as conceptual layers.

From top to bottom: stressors (Layer 1) acting on the plant are first perceived (Layer 2), resulting in a signalling (Layer 3)
cascade, that leads to plant defence and/or adaptive changes in the form of executor molecules and processes (Layer 4,
examples listed below each group).

ABA: Abscisic Acid; ADHI: Alcohol Dehydrogenase 1; CK: Cytokinin; ET: Ethylene; GA: Gibberellic Acid; HSP: Heat
Shock Protein; IAA: Indole-3-acetic acid (Auxin); JA: Jasmonic Acid; MC: Multicystatin, PCPI: Potato Cysteine Proteinase
Inhibitor; PR: Pathogenesis Related; ROS: Reactive Oxygen Species; SA: Salicylic Acid; TOR: Target Of Rapamycin.
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107 The Comprehensive Knowledge Network (CKN)

108 Complementary to PSS, CKN is a large-scale condition-agnostic assembly of
109 current knowledge, offering broader insights into not only stress signalling, but also
110 any other plant process. CKN is a network of experimentally observed physical
111 interactions between molecular entities, encompassing protein-DNA interactions,
112 interactions of smallRNA with transcripts, post-translational modifications, and
113 protein-protein interactions (Table 1) in Arabidopsis. Here, we present an update to the
114 previous version with 20,012 entities and 70,091 interactions (Ramsak et al., 2018), to the
115 current version which provides 30% more entities (26,234 entities) and an almost 7-fold
116 increase in the number of molecular interactions (488,390 unique interactions, Table 1).
117 The entities in CKN include 24,829 genes, out of 38,202 registered in Araportll (Cheng
118 et al., 2017).

119 During the update, only STRING was found to be altered since 2018 (updated to
120 v11.5 in 2021), and thus re-integrated. Additionally, nine novel sources of information
121 were added, bringing the total number of sources CKN integrates to 25 (Supplementary
122 Table 2). Interactions are annotated with the interaction type and whether the
123 interaction has directionality (e.g. undirected binding vs transcription factor
124 regulation). A ranking system for the interaction reliability (Table 1 legend), allows
125 researchers to evaluate how biologically credible and relevant individual interactions
126 are. CKN includes all relevant reactions from PSS to allow for a direct comparison of

127 results obtained through both networks.
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Table 1: Counts of unique CKN interactions by type and reliability ranking

Rank meanings: 0 — manually curated interactions from PSS, 1 - literature curated interactions detected
using multiple complementary (mostly targeted) experimental methods (e.g. luciferase reporter assay,
co-immunoprecipitation, enzymatic assays), 2 — interactions detected solely using high-throughput
technologies (e.g. high-throughput yeast two-hybrid, chromatin immunoprecipitation sequencing,
degradome sequencing), 3 — interactions extracted from literature (co-citation, excluding text mining) or
predicted in silico and additionally validated with data, 4 — interactions predicted using purely in silico
binding prediction algorithms. See Supplementary Table 2 for a detailed list of sources.

Number of Rank
Total
resources | 1 2 3 4
binding 13 650 24,054 30,442 343,401 31,253| 429,800
transcription factor 9| 480 1442 8567 174 11,869 22,532
regulation
Interaction \small RNA 3 ST 41 34,059 [ 34148
type interactions
post-translational 2| 7 393 192 : | 1339
modification
other® 1 571 - - - - 571
Total 25°| 2,455° 25,937 39,243 377,634 43,122 488,390
*Includes interactions from PSS that do not fall into the previous categories.
®Some resources contain multiple interaction types.
¢ Includes interactions expanded from 335 PSS functional clusters to 2253 individual genes.
128 SKM environment and features
129 To enable accessibility and exploitation of the resources within SKM we have

130 developed an encompassing environment (Fig. 2). The main features include content
131 exploration and visualisation, access to various export formats, and the ability to
132 contribute improvements based on novel biological knowledge. The SKM webpage is

133 publicly available at https://skm.nib.si/.

134 Exploration. SKM implements a number of options for the exploration of its
135 contents, including interactive network visualisations of both PSS (PSS Explorer, Fig.
136 2C) and CKN (CKN Explorer, Fig. 2F), offering neighbourhood extraction of selected
137 entities, shortest path detection between multiple entities of interest, and on the fly

138 exports. Both Explorers provide direct references to the object provenance, as well as
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Figure 2. Stress Knowledge Map environment and features.

New validated biological interactions (e.g. transcriptional and translational regulation of a target gene) from various sources
(A) can be added to PSS through the guided contribution interface (B), and are consolidated according to the PSS schema.
The contents of PSS can be explored through interactive search and visualisation provided by both the PSS Explorer (C) and
the PSS overview in Newt (D). Correspondingly, sources for CKN interactions (E) are integrated and consolidated to the
CKN schema through batch scripts, and are accessible for exploration through the CKN Explorer (F) which provides
interactive search and visualisation of CKN interactions. Data provenance and interoperability links (G) provide context for
SKM contents. Exports of PSS and CKN (H) enable various additional analysis and modelling approaches, including
through the Python functions provided in the SKM-tools resource (I).

Links to specific external resources and tools are highlighted in red. HT — high-throughput; PSS — Plant Stress Signalling
network; CKN — Comprehensive Knowledge Network; TF — transcription factor; ncRNA — non-coding ribonucleic acid;
DOT/SBGN/SBML/SIF — Systems Biology data formats, see Table 3 for details.
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149 links for the corresponding Arabidopsis genes within KnetMiner knowledge base
141 (Hassani-Pak et al., 2021), providing even broader context. An additional visualisation
142 of the complete PSS model, showing biological pathways, is available in the Newt
143 Viewer (Fig. 2D). A separate search interface utilising internal and external database

144 identifiers (e.g. DOI, KEGG) is also available for PSS.

145 Modelling and analysis support. PSS is available for download in a number of
146 domain standard formats (Fig. 2H; summarised in Table 3) enabling further
147 visualisations, analysis, and dynamical modelling. A suite of tools implemented in
148 Python (SKM-tools, Fig. 2I) was developed to support additional network analysis of

149 CKN and PSS (described in Table 4).

Table 3: Supported exports of SKM knowledge graphs.

Format Description Available for

SBGN-ML |Systems Biology Graphical Notation XML format,|PSS
enabling  graphical visualisation of models
(Bergmann et al., 2020).

SBML Systems Biology Markup Language XML format,|PSS
enabling mechanistic modelling (Keating et al., 2020).

DOT Graph description language, compatible with|PSS
Graphviz applications (Gansner and North, 2000)
(graphviz.org).

SIF/LGL Simple Interaction Format/Large Graph Format,|PSS, CKN
compatible with Cytoscape (Shannon et al., 2003) and
DiNAR (Zagorscak et al., 2018).

boolnet Boolean network format for logical modelling|PSS
compatible with pyboolnet (Klarner et al., 2017), and

BoolNet (Miissel et al., 2010) among others.

150
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151
Table 4: Features of SKM-tools.

Functionality Description

Load Directly create networkX (Hagberg et al., 2008) graph objects for PSS or
CKN, thus providing access to the multitude of graph analysis and graph
operations available in the library.

Tissue specificity |For PSS and CKN, filter on node type or node origin (plant or foreign), and

node filter additionally for CKN filter nodes based on tissue specificity, creating a
network specific to the biological question at hand.

Edge reliability ~ |Filter CKN edges by rank, removing less reliable edges as the situation

filter requires.

Network analysis [Standard node based analysis approaches, such as neighbourhood
extraction (identifying the immediate interactors of a node) and shortest
path analysis (identifying directed or undirected paths between source and
target nodes of interest).

CUT-tool CUT-tool provides information on which genes are needed to be perturbed
(knock-out, knock-down or overexpress) in order to modulate the response
of the network.

Cytoscape Loading of networks and subnetworks into Cytoscape(Otasek et al., 2019).

Automation Functionalities include providing default styling, node, edge, and path
highlighting, network layout from coordinates, and pdf exporters.

Multi-omics data |Import of multi-omics experimental data tables (e.g. logFC and p-values) as

visualisation context to the networks, and functionality to visualise experimental data
associated with nodes in the network, through rendering of PNG’s (e.g.
heatmaps) in the Cytoscape view.

Link to DINAR  |Instructions for the use of CKN or PSS as the prior knowledge network for
integration and visualisation of multiple condition high-throughput data in
the DINAR application (Zagorscak et al., 2018).

152 Extending and improving SKM. The contribution interface of PSS allows for

153 constant updates based on novel discoveries (Fig. 2B). Registered users can add new
154 entities and interactions to PSS through guided steps, and expert curators are able to
155 make corrections. For major updates to PSS, a batch upload option is also available. The
156 contribution interface automatically retrieves GoMapMan (Ramsak et al., 2014) gene
157 descriptions and short names, as well as article metadata via DOI or PubMed ID,

158 simplifying the contribution process.

159 FAIRness. SKM has been developed with the FAIR principles (Findable,

160 Accessible, Interoperable, and Reusable) (Wilkinson et al., 2016) at the forefront. SKM is

10
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161 indexed in  FAIDARE  (FAIR  Data-finder for  Agronomic  Research;

162 https:/ /urgi.versailles.inra.fr /faidare/search?db=SKM), listed in both bio.tools

163 (https://bio.tools/skm) and FAIRsharing.org (https://fairsharing.org/4524), and

164 registered at identifiers.org (https://registry.identifiers.org/registry/skm). Aside from

165 the downloads, a GraphQL endpoint is available for programmatic access to PSS. SKM
166 also utilises stable reaction and functional cluster identifiers. Data provenance is
167 maintained by storing links to input data through DOIs and external database

168 references (Fig 2G).

169 Case studies

170 To showcase the benefits of SKM, we present two case studies utilising SKM for
171 contextualisation of experimental results within prior knowledge networks. The first
172 case study concerns jasmonates (JA) and salicylic acid (SA) interference with abscisic

173 acid (ABA)-mediated activation of RESPONSIVE TO DESICCATION 29 (RD29)

174 transcription, and the second a proteomics analysis of Ca**-dependent redox responses.

175 Case study 1: Interaction of ABA, JA, and SA in the activation of RD29 transcription

176 In Arabidopsis, the RESPONSIVE TO DESICCATION 29 A gene (AtRD29A)
177 plays a pivotal role in stress acclimation (Baker et al., 1994) and is transcriptionally
178 regulated via several promoter elements, including the ABA responsive binding motif
179 ABRE (ACGTG), located close to the transcription initiation site. The 1 kbp upstream

180 region of the potato StRD29 transcription initiation site also contains the

11
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181 ABA-responsive binding motif ABRE, and several other abiotic stress responsive

182 binding elements (Supplementary Figure 1).

183 Treatment of leaf discs from tobacco plants transiently transformed with
184 pStRD29::fluc and transgenic potato plants (cv. Désirée) carrying the pStRD29::mScarlet-I
185 (Supplementary Figure 2) construct showed that pStRD29 activity was strongly induced
186 by ABA, and reached its highest amplitude after approximately four hours in the ABA
187 solution (Fig. 3A). Treatments with either jasmonate (JA) or salicylic acid (SA) alone did
188 not lead to an increase in pStRD29 activity. However, combined treatments of ABA with
189 JA or ABA with SA attenuated the ABA induced activation of pStRD29, indicating a
190 negative impact of both these phytohormones on ABA dependent StRD29 transcription
191 (Fig. 3A). We subsequently constructed transgenic potato plants (cv. Désirée) carrying
192 the pStRD29::fluc construct to confirm the negative impact of MeJA and SA on the ABA
193 responsive promoter activity in planta (Fig. 3B). The impact of MeJA on the ABA
194 activation of both RD29 was further analysed in potato and Arabidopsis by RT-qPCR .
195 The data revealed that both species display an attenuation of the ABA induction of

196 RD29A/RD29 by jasmonates (Fig. 3C).

197 We first tried to explain the observed impact of jasmonates and SA on
198 ABA-dependent RD29 activation through motif analysis of the promoter, but no SA or
199 JA signalling related motifs were identified in the potato promoter sequence
200 (Supplementary Figure 1). Thus we hypothesised that the signalling pathways interact
201 upstream from actual transcriptional activation. Due to the complexity of several
202 phytohormone pathway interactions, this is a good case study for the hormone-centric

203 and expert curated PSS model. We performed a triple shortest path analysis analysis to

12
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Figure 3: Elucidating connections from JA and SA to ABA-mediated regulation of RD29 expression in potato.

(A/B) Expression of firefly Iuciferase driven by the StRD29 promoter (pStRD29::fluc) in transiently transformed tobacco
leaves (A) and transgenic potato leaves (B). Luciferase activity was analysed in response to single and combined
phytohormone treatments as indicated (50 uM MeJA, 50 uM ABA and 50 uM SA). Values are shown as mean + SE.

(C) Relative transcript abundance of StRD29 (left panel) and AtRD29A (right panel) six hours after application of 50 uM
ABA, 50 uM MelJA or combination of both, analysed by RT-qPCR. Bars represent mean values = SE of 3-4 independent
biological replicates.

(D) PSS node-induced subnetwork of shortest paths and immediate neighbours. Paths are directed from the hormones
(source) to RD29 (target). Nodes and edges are coloured by the path source: ABA (brown), JA (green), and SA (blue). Edges
to first neighbours, edges not on the directed shortest paths, and shared neighbourhood nodes are indicated in grey. Solid
edges indicate activation (arrow head) or inhibition (T head), dashed edges represent binding, and dot-dash edges transport.
The explorable networks for case study 1 are provided in Supplementary Data 1.

(E) Validation of the hypothesis presented in (D). Concentrations of hormones are 50 uM ABA, 15 uM MeJA, and 30 uM
SA. Luciferase activity at 5 hours shown (see Supplementary Table 3 for complete response curve). The results show SA and
jasmonates indeed act synergistically on attenuation of ABA signalling, as the addition of SA and jasmonates has a stronger
effect than the addition of each hormone individually.
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205 identify potential mechanisms of studied crosstalk. The analysis revealed an
206 intersection of JA signalling with the ABA pathway through a protein-protein
207 interaction of the JA-responsive MYC-like transcription factor 2 (MYC2) with the ABA
208 receptor PYRABACTIN RESISTANCE LIKE 6 (PYL6; Fig. 3D). This reaction entry
209 (rx00459) is based on experimental in vitro and in vivo interaction studies of PYL6 and
210 MYC2 in Arabidopsis (Aleman et al., 2016). It could be conceived that this interaction
211 depletes PYL, thereby limiting ABA perception(Aleman et al., 2016), which could
212 explain lower activation of the ABA pathway in the presence of jasmonates. The SA
213 pathway was found to converge with the ABA pathway through the JA pathway with a
214 protein-protein interaction between the SA receptor NPR1 and MYC2 (rx00432)
215 (Nomoto et al., 2021) and this might influence the interaction of MYC with PYL. To
216 verify the hypothesis of direct synergism between JA and SA in the attenuation of the
217 ABA response, we performed titration experiments of combined JA and SA treatment
218 on ABA-dependent StRD29 induction which was confirmed (Fig. 3E, Supplementary

219 Table 3).

220 Case study 2: The impact of Ca** channel inhibitor LaCl; on proteome-wide peroxide
221 responses

222 Secondary messengers, such as Ca** and H,0,, are important in the translation of
223 many perceived environmental changes towards a cellular response (Kudla et al., 2010;
224 Pirayesh et al., 2021). It is still a challenge to disentangle and understand the principles
225 of specificity and information flow in such networks. Lanthanide ions are known to
226 block anion channels and inhibit the flux of Ca® across the plasma membrane (Knight
227 et al., 1992; Tracy et al., 2008). Thus, they can be used to identify Ca**-dependent plant

228 responses. H,0, is known to induce Ca*" transients (Rentel and Knight, 2004). In this
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229 case study, we analysed the proteome of Arabidopsis rosettes treated with either H,O,
230 or a combination of H,O, and LaCl; to identify the components of H,O, signalling that
231 are Ca*-dependent. We initially identified 119 proteins that showed significantly
232 changed abundances in response to H,O, compared to mock treatment after 10 or 30
233 min of treatment. Out of these, 49 proteins did not significantly respond in the same
234 manner upon pretreatment with LaCl, (Supplementary Table 4), indicating that a
235 significant number of H,O, induced changes in protein abundance required a Ca*

236 signal (Ca**-dependent redox-responsive proteins).

237 In the quest to identify mechanistic explanations behind these results, CKN
238 provides a universal resource for large-scale hypothesis generation. The largest
239 connected component of CKN contains 98% of the nodes and 99% of the edges,
240 indicating its high connectivity, thus the analysis was performed on this part of CKN
241 only. Using CKN pre-filtered to only leaf-expressed genes, we searched for directed
242 shortest paths from known Ca® signalling related proteins (source set) to the
243 Ca**-dependent redox-responsive proteins identified by the proteomics approach
244 (target set). The final source set of 53 genes included mainly calmodulins,
245 Ca**-dependent protein kinases, and calcineurin B-like proteins CBLs (Supplementary
246 Table 4). Of the 49 Ca**-dependent redox-responsive target proteins, 41 were present in
247 CKN. All of these proteins could either be connected to the source set of Ca** signalling
248 related proteins directly or through an up to 4-step pathway (Fig. 4A), or were in the
249 source set themselves. Combining all the detected shortest paths (all sources to all
250 targets) into a single network (Fig. 4A) revealed major network hubs — connected to

251 multiple known Ca*" signalling genes and potentially regulating multiple targets.
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Figure 4: Deciphering the Ca®* dependent network in peroxide signalling.

(A) All shortest paths identified in CKN leading from known Ca®" related proteins (sources - pink bordered nodes) to Ca**-
dependent redox-responsive proteins identified by proteomics (targets - green filled nodes) using rank 0, rank 1, and rank 2
edges (as described in Table 1 legend), merged into a single network.

The excerpts show (B) a subnetwork with a focus on calmodulins, and (C) a subnetwork with a focus on LFY3 and ASNI1.
Solid edges with arrowheads indicate directed, regulatory interactions (see Table 1), while dashed edges indicate undirected
binding. Red edges are part of the merged cut-set. Nodes with proteomics measurements are annotated with a heatmap
indicating change in protein abundance after 10 min (top row), after 30 min (bottom row) between H,0, and mock treated
samples (left column) and between Ca" blocker treatment and H,0, and Ca*" blocker treatment (right column). Significant
changes in abundance are marked with an asterisk in the centre of the square. Red — increase in treatment compared to
control, blue — decrease in treatment compared to control. Nodes are labelled with their short name, if it exists. The complete
explorable networks are provided in Supplementary Data File 1, and all source and target nodes are listed in Supplementary
Table 4.
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253 The analysis, for example, revealed an intricate network of
254 calmodulins-dependent  regulation of downstream targets in Arabidopsis
255 (CAM2,3,5,6,7, Fig. 4B), Another example of such a hub is Floricaula/leafy-like
256 transcription factor 3 (LFY3) shown in Fig. 4C, which integrates paths originating from

257 four source nodes, and in turn potentially regulates four downstream targets.

258 The next step in the analysis would be confirmation of the identified mechanisms
259 with functional analysis experiments, e.g. to perform knock-out experiment(s) and
260 confirm the role of the proposed regulatory network. The design of such experiments is
261 however not always trivial, thus we designed the CUT-tool within SKM-tools, to aid
262 experimentalists. This analysis reveals the minimum interactions that are necessary to
263 be severed (“cut-set”) in order to separate the upstream regulators from the
264 downstream targets. The cut-set to disrupt the regulation of all targets are shown in Fig
265 4A. As an example, the cut-set of one target, glutamine-dependent asparagine synthase
266 1 (ASN1) is shown in Fig. 4C, revealing that de-regulation of ASN1 would require the
267 knockout of both LFY3 and ARABIDOPSIS NAC DOMAIN CONTAINING PROTEIN

268 29 (NAP).

269 Discussion

270 Plant stress signalling pathways are connected by synergistic and antagonistic
271 interactions in a complex network that checks and balances the plant’s response to their
272 environment and its growth/development (Eckardt, 2015; Bittner et al., 2022). To
273 understand the functioning of these complex processes, novel approaches are required.

274 Knowledge graphs, such as those provided by SKM, provide powerful and accessible
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275 tools to integrate and simplify interpretations within curated published knowledge, as
276 well as providing a basis of a plant digital twin, and all the advantages of in silico
277 simulation experiments it enables. A number of tools were developed within the SKM
278 environment to support this, and also enable efficient linking to complementary tools.
279 To showcase the applicability of SKM, we investigated two distinct experimental
280 datasets. In the first, our experiments showed evidence that jasmonate and SA
281 treatment attenuates ABA activated transcription of RD29 in both the crop plant potato
282 and the model plant Arabidopsis through hormonal signalling cross-talk (Fig. 3). A
283 manual attempt to extract known information on crosstalk between ABA and JA with a
284 search in PubMed ((JA OR jasmon*) AND (ABA OR abscisic) AND (plant)) resulted in
285 over 2,000 published items. With the wealth of data generated these days, it would be
286 laborious for an individual researcher to perform a thorough literature survey, while
287 interrogation of SKM provided a mechanistic hypothesis that explains the experimental
288 results within hours. The hypothesis was experimentally confirmed and gives the
289 explanation for the synergistic action of jasmonates and SA that is sometimes argued
290 for in literature (Mur et al., 2006; Zhang et al., 2020). Although knowledge compiled in
291 SKM is predominately based on Arabidopsis, this use case clearly shows its
292 applicability in other species. Through orthology tools such as PLAZA (Van Bel et al.,
293 2022), the knowledge graphs in SKM can be translated to other species, as was done for
294 the previous version of CKN to Prunus persica (Foix et al., 2021), Solanum tuberosum
295 (RamsSak et al., 2018), and Nicotiana benthamiana (JuterSek et al., 2022). This way,
296 canonical principles of plant signalling networks can be assessed across species.

297 Our second case study showed that SKM is not only helpful in revealing

298 mechanisms in complex pathways for a single target, but also can be used to identify
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299 regulators using a large number of targets, as is commonly the case with interpretation
300 of large omics datasets. Using network analyses, arguably the simplest qualitative
301 modelling approach, we identified hubs involved in complex redox - Ca** signalling
302 interconnectedness. By identifying connections from known Ca** related proteins to our
303 experimentally derived target list, we were able to prioritise certain processes and
304 hypotheses in an informed manner. One of the SKM-tools features, the CUT-tool, was
305 designed to help in the next step of research: validation of generated hypotheses. It
306 allows for the design of complex functional validation experiments (e.g. gene knock-out
307 or overexpression) identifying the genes whose activity should be modulated to achieve
308 a desired effect, taking network redundancy into account. Overall, in both case studies,
309 SKM proved to be a useful generator of potential mechanistic explanations of the

310 observed data.

311 In agriculture, plant digital twins, as virtual replicas of physical systems, are
312 expected to provide a revolutionary platform for modelling the effect of crop
313 management systems and environmental changes (Pylianidis et al., 2021). Digital twins
314 can be used to perform in silico experiments that guide or replace lab and field
315 experiments. The detail that digital twins provide, combined with fast computational
316 methodologies, allows for efficient planning of experiments and will thus speed up our
317 understanding of plant functioning and provide information for more effective
318 breeding. Aside from being a tool for the interpretation of experimental data, SKM also
319 provides a starting point for the integration of stress signalling and growth tradeoffs in

320 digital twins.
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321 SKM will be continuously updated, keeping abreast of the latest developments
322 in the field. We believe the integrated knowledge in SKM will help in understanding of
323 plant interactions with the environment, by enabling exploration of knowledge and by
324 supporting diverse mechanistic modelling approaches. This is of interest to the wider
325 plant scientific community, enabling the informed design of experiments and, in the

326 long term, contributing to the breeding of improved varieties and precision agriculture.

327 Methods

328 PSS construction

329 From the predecessor model (“PIS-v2”, Ramsak et al., 2018), numerous
330 improvements, additions, and reformulations were carried out, resulting in the current
331 PSS. In addition to intracellular pathogens (potyviruses), we extended PSS to also
332 contain perception of extracellular pathogens (Pseudomonas sp.) and insect pests, as well
333 as heat, drought, and waterlogging stress. Downstream of perception, PSS now
334 includes Ca®* signalling, ROS signalling, the MAPK signalling cascade, as well as the
335 synthesis and signalling of all major phytohormones. We also added the synthesis of
336 actuator molecules and processes, as well as known regulators of growth and major

337 processes leading to growth.

338 PSS is implemented as a Neo4j graph database. The types of nodes and edges
339 (relationships) in the database are summarised in Supplementary Table 5. Genes and
340 gene products are represented by functional cluster nodes, including protein and
341 noncoding RNA nodes. Functional clusters allow for the representation of genetic

342 redundancy. These groups were defined using sequence similarity between genes
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343 (orthologues and paralogues) and experimental data that confirmed functional overlap.
344 The functional cluster concept includes groupings of enzyme coding genes (similarly to
345 the E.C. number system), as well as genes involved in transcriptional and translational
346 regulation. Groups of metabolites with the same biological function are also
347 represented as metabolite families. Nodes also include more abstract entities, such as
348 known but unidentified gene products and plant processes. Finally, foreign entities,

349 such as biotic or abiotic stressors are also included as nodes.

350 In addition to biological entities, molecular interactions are also represented by
351 nodes in PSS, and are categorised into ten formal reaction types (e.g. protein activation
352 or catalysis, Supplementary Table 5). Reaction participant nodes are connected to the
353 reaction nodes by relationships, with the type of relationship representing the role of
354 the participant (e.g. SUBSTRATE, ACTIVATES), as demonstrated in Fig. 2B. These
355 relationships are annotated with the subcellular location and the form of the participant

356 when involved in the reaction (e.g. ‘cytoplasm’ or ‘nucleus” and ‘gene’ or “protein’).

357 Where applicable, nodes are annotated with their provenance (e.g. a DOI) and
358 additional information such as biological pathways, gene identifiers, descriptions and
359 annotations (TAIR (Berardini et al., 2015), GoMapMan (Ramsak et al., 2014)), references
360 to external resources (DOI, PubMed, KEGG (Kanehisa et al., 2016), MetaCyc (Caspi et
361 al., 2016), AraCyc (Mueller et al., 2003), and ChEBI (Hastings et al., 2016)), and
362 explanatory statements (such as a quote from the article and the experimental

363 techniques used in the original experiments).
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364 All updates to PSS are immediately available in the various interfaces and all
365 download formats. A frozen version (PSS v1.0.0) is also available in all export formats

366 and additionally, a database dump with detailed deployment instructions can be

367 accessed at GitHub (https://github.com/NIB-51/skm-neo4j). All sources and resources

368 used to create PSS v1.0.0 are available in Supplementary Table 6.

369 PSS is available in a number of systems biology standard formats, including
370 SBML (using 1libSBML (Bornstein et al., 2008)), SBGN (using libSBGN (Ko6nig, 2020) and
371 pySBGN (Podpecan, 2023) libraries), DOT (using pygraphviz (Aric Hagberg et al.) and
372 pydot (Sebastian Kalinowski et al., 2023)), and a Boolean formulation in boolnet format.
373 SKM also supplies several generalised formats of PSS in SIF/TSV format, allowing

374 multiple formulations of the network model.

375 CKN construction

376 The second edition of the comprehensive knowledge network (CKN-v2) was
377 created by merging pairwise interactions from 25 public resources (details in
378 Supplementary Table 2). Additional filtering was performed on the STRING v11.5
379 network (Szklarczyk et al., 2023), where the requirement was to only include physical
380 interactions, confirmed by experimental data or existence in a database. As Table 2
381 summarises, five reliability ranks were designed to describe the reliability of the
382 interactions, across the diversity of the various sources. All interactions were then
383 integrated, resulting in a single network of 574,538 interactions. The network was
384 subsequently condensed by collapsing multiple interactions of the same type between a

385 pair of interactors into a single edge. In this process, the highest ranked interaction took
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386 precedence to define the interaction type, but all sources that contain any interaction

387 between the pair were retained in the edge attributes.

388 All gene loci nodes were annotated using Araportll (Cheng et al., 2017)
389 downloaded from TAIR in June 2023 (Berardini et al., 2015). Gene loci that have been
390 merged or made obsolete were renamed or removed respectively. Genes are also
391 annotated with Plant Ontology annotations from TAIR (Berardini et al., 2015) (based on
392 gene expression patterns reported in publications), enabling the extraction of tissue

393 specific interaction networks.

394 CKN-v2 is available as part of the SKM application and on the downloads page

395 (https://skm.nib.si/downloads/).

396 SKM Environment

397 The SKM web application is implemented in Python using the microframework
398 Flask. The interactive visualisations of PSS and CKN are based on Biomine Explorer
399 (Podpecan et al., 2019), implemented using vis.js and open-source Python libraries
400 (including networkX (Hagberg et al., 2008) and graph-tools (Peixoto, 2014)), and are

401 freely  available on GitHub at  https://github.com/NIB-SI/ckn viz — and

402 https:/ /github.com/INIB-SI/pss viz respectively. The mechanistic interface to PSS is

403 provided through an instance of the Newt Editor(Balci et al., 2021), utilising the SBGN

404 standard.
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405 SKM-tools

406 SKM-tools (https://github.com/NIB-5I/skm-tools) is a collection of Python
407 scripts and notebooks, incorporating network analysis and visualisation tools, that
408 facilitates interrogation of CKN and PSS with targeted questions beyond the scope of
409 the web application. Included functionalities are described in Table 4. The tools are
410 developed using the networkX (Hagberg et al., 2008) and py4cytoscape (Keiichiro Ono

411 et al.) libraries.

412 The CUT-tool utilises the max-flow min-cut (Edmonds-Karp (Edmonds and
413 Karp, 1972)) algorithm, which determines the minimum edges that are necessary to be
414 severed (“cut set”) in order to separate the upstream sources from downstream targets.
415 A max-flow min-cut analysis of multiple sources to an individual target reveals the
416 minimum cut set to disrupt all signalling to the target. In order to calculate the
417 max-flow min-cut across multiple sources, a dummy node connected with arbitrarily
418 high capacity to all original sources is introduced, and the calculation done using the

419 dummy node as the source.

420 Case studies

421 Promoter analysis
422 Predicted cis-regulatory motifs within the 1kbp promoter sequence of AtRD29A
423 and StRD29 were identified via the Atcis-database of the Arabidopsis Gene Regulatory

424 Information Server (AGRIS) (Lichtenberg et al., 2009). In addition we used PlantPAN 3.0
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425 (Chow et al., 2019) to identify StRD29 specific motifs which were not previously

426 identified in AtRD29A.

427 Plant material and growth conditions

428 Solanum tuberosum (cv. Désirée) plants were propagated by cuttings from sterile
429 grown plants. After 7 days of sterile growth on 2 MS-Media (pH 5.7, 2 (w/v) %
430 sucrose) to initiate root growth, plantlets were transferred into single pots filled with
431 soil (9 parts soil, 1 part perligran). Arabidopsis thaliana (ecotype Col-0) seeds were
432 directly sown on soil and transferred into single pots after 4-6 days. For all experiments,
433 leaves were used from 18-21 days old plants grown in climatized chambers (20 + 2 °C)
434 under long-day conditions (16 h light/8 h dark) with a light intensity of 120 pmol

435 photons m™ s™ (Philips TLD 18W alternating 830/840 light colour temperature).

436 For promoter reporter assays of transiently transformed N. benthamiana leaves,
437 seeds were germinated on pProfi-substrate (Gramoflor). Five days after germination,
438 seedlings were separated into 15.5 cm diameter x 12 cm height pots of 15.5 cm diameter
439 x 12 cm height filled with substrate (3 parts profi-substrate, 1 part vermiculite, 1.5 kg
440 osmocote start per m3). Plants were grown in a greenhouse under long day conditions
441 (16h light at 28 °C/8 h dark at 22 °C) at an average light intensity of ~250 pE and 80%

442 relative humidity.

443 Soltu.DM.03G017570 was identified as the orthologous locus of Arabidopsis
444 RD29A in S. tuberosum cultivar DM1-3 wusing the DM v6.1 database

445 (http:/ /spuddb.uga.edu/). To generate the gene reporter lines in the potato cv. Désirée,

446 1158 bps of the 5' UTR directly upstream of the start codon region were amplified by
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447 PCR and either the firefly luciferase (fluc) or the mscarletl (mScar) gene in a custom
448 variant of the pBIB Hyg vector carrying a hygromycine resistance for selection in

449 plants. The complete sequences of both vectors including annotations can be found in

450 Supplementary Figure 3. Both constructs were introduced into the potato cultivar

451 Désirée as described previously (Rocha-Sosa et al., 1989).

452 Plate-reader based luciferase assays

453 Agrobacteria carrying the pBIN-StRD29:fluc or pBIN-AtRD29A:fluc plasmid
454 were grown in LB liquid medium supplemented with the respective antibiotics.
455 Overnight cultures were diluted to OD600 = 0.1 with fresh LB medium and grown to
456 OD600 = 0.8. Cells were harvested by centrifugation (22°C, 15 min 4000g) and
457 resuspended in 5% sucrose solution in H,O to an OD600 = 0.2. The agrobacteria
458 suspension was infiltrated into leaves #6, #7 and #8 of four week old N. benthamiana
459 plants. Care was taken that the N. benthamiana plants selected for infiltration and
460 measurement were not suffering an obvious pathogen attack before infiltration, during
461 the transformation period, hormone treatment and measurement. After 48 hours, leaf
462 discs (o 6 mm) of infiltrated plants were transferred into 96 well plates containing 100 ul
463 buffered MS (5 mM MES, pH 5.8) supplemented with 1 % sucrose (w/v) and incubated
464 for 2 hours under greenhouse growth conditions. Immediately before measurement,
465 luciferin, to a final concentration of 30uM and the hormones, to the final concentration
466 indicated in the text, were added into each respective well. For all combinatorial
467 hormone treatments the different hormones were applied at the same time to the
468 indicated final concentrations. Fluc-luminescence was recorded in a multi-mode
469 microplate reader (TECAN spark multimode microplate reader, Serial number:

470 2301004717) in a window from 550 nm to 700 nm, for 2 seconds every 5 min for each
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471 well. During the measurement period the leaf discs were kept in darkness and at a

472 constant temperature of 22 °C.

473 For luminescence measurements on S. tuberosum StRD29::fluc plants, leaf discs (o
474 6 mm) were placed in a 96-well plates containing 100 pl of 30 pM luciferin dissolved in
475 Y2 MS After 2 hours of preincubation, the solution was replaced by 100 pl of 30 pM
476 luciferin containing various effectors (50 uM ABA, 50 uM MeJA or mix of both) and
477 luminescence was measured every 5 min for up to 12 hours using aTriStar2 b 492
478 multimodereader (Berthold Technologies GmbH, Germany). During the measurement
479 period the leaf discs were kept in darkness. All luminescence analysis was performed
480 with at least 5 independent experimental replicates. Luminescence data is available in

481 Supplementary Table 3 and Supplementary Table 7.

482 Transcript analysis

483 For StRD29 and AtRD29A transcript analysis, S. tuberosum or A. thaliana plants
484 were treated with water (mock), 50 uM ABA, 50 uM MeJ A or combination of both for 6
485 hours in 3-4 independent biological replicates. Total RNA was extracted from 100 mg
486 leaf material using the Gene Matrix Universal RNA Purification Kit (Roboklon,
487 Germany) according to the manufacturer's instructions. RNA integrity was assessed by
488 agarose electrophoresis and RNA quantity and purity by UV/VIS spectrophotometer
489 (Eppendorf, Germany). For quantitative real-time PCR (qRT-PCR) analysis, RNA was
490 transcribed into cDNA using the RevertAid First Strand cDNA Synthesis Kit (Thermo

491 Scientific, Germany). The reaction was stopped by 5 min incubation at 75 °C.
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492 Where applicable, all primers were designed to span exon-intron borders using
493 QUANTPRIME (Arvidsson et al., 2008) (gene identifiers and primer sequences in
494 Supplementary Table 8). qRT-PCR was performed with three technical replicates for
495 each sample in 96 well plates using a CFX96 real-time thermal cycler system (Bio-Rad,
496 Germany). Each reaction contained 1x SYBR-green master mix (Thermo Fisher), 2 ng/ul
497 cDNA and 10 uM each of the respective forward + reverse primer. The specificity of
498 each product was assessed based on the melting curves after 40 cycles of amplification.
499 All transcript levels were normalised against the geometric mean of the transcript
500 abundances of the reference genes YLS8 and CYP5 for Arabidopsis and YLS8 and ACT7
s01 for potato. Target relative copy numbers were calculated using quantGenius (Baebler et

502 al., 2017) (http:/ /quantgenius.nib.si/), provided in Supplementary Table 9.

503 PSS network analysis

504 We identified the pathway between ABA and RD29 by querying for all directed
505 shortest paths from ABA to RD29 in the reaction participant bipartite projection of PSS.
506 We then extracted all directed shortest paths from JA and SA to RD29 that partially
507 overlapped with the ABA to RD29 path. For added context to these results, we
508 expanded the network induced by the shortest paths to include the first neighbours of

509 all nodes (Fig. 3E).

510 Analysis was performed in Python using the networkx (Hagberg et al., 2008)
511 library and visualised in Cytoscape (Cline et al., 2007) using the py4cytoscape (Keiichiro
5120no et al) library. All code is available in the SKM-tools repository

513 (https:/ /github.com /NIB-51/skm-tools).
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514 Proteomic analysis

515 Complete rosettes of three-week-old A. thaliana plants were incubated in 1 mM
516 LaCl; solution or ddH,O for 1 hour. Afterwards, plants were transferred into either 20
517 mM H,0, or into ddH,0O and harvested after 10- and 30-min incubation, respectively.
518 Complete rosettes of 12 plants per treatment were pooled and immediately frozen in
519 liquid nitrogen. Frozen plant material was homogenised using a pre-cooled mortar and
520 pestle and stored at -80 °C. For peptide isolation, 500 mg frozen plant material was
521 mixed with 2 ml lacus-buffer (20 mM Tris pH 7.7, 80 mM NaCl, 0.75 mM EDTA, 1 mM
522 CaCl,, 5 mM MgCl,, 1 mM DTT, 1/200 mM NaF) containing 4 tablets of protease
523 inhibitor (Roche cOmplete, EDTA-free, Protease inhibitor cocktail tablets) and 10 tablets
524 of phosphatase inhibitor (Roche PhosSTOP™) per 200ml. Samples were incubated for
525 10 min on ice and subsequently centrifuged at 15.000 g for 10 min at 4 °C. The
526 supernatant was transferred into a new tube, adjusted to 20% (v/v) trichloroacetic acid
527 and incubated overnight at -20 °C. The precipitated samples were stored until

528 preparation for mass-spec analysis.

529 Samples were centrifuged at 15.000 g, vacuum-dried and eluted in urea lysis
530 buffer (8 M urea, 150 mM NaCl and 40 mM Tris-HCI pH 8). Protein concentration was
531 determined via BCA-assay (Thermo Fisher). In total, 3 mg of protein per sample were
532 first reduced in 5 mM DTT and subsequently alkylated in 15 mM iodoacetamide for 30
533 min at room temperature in the dark. The alkylated samples were quenched by adding
53 DTT to final concentration of 5 mM and mixed with 30 mg Sera-Mag
535 carboxylate-modified magnetic beads (1:1 ratio of hydrophilic and hydrophobic beads,

536 Cytiva, USA). The peptides attached to the beads were washed four times with 80%
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537 (v/v) ethanol and digested in a 30 mM ammonium bicarbonate buffer (pH 8.2)
538 containing 30 pg trypsin (Promega, Wisconsin, USA). Tryptic digestion was performed
539 overnight at 37 °C under constant shaking. The digestion was stopped by the addition
540 of formic acid (end-concentration of 4%). In total, 100 pg of the digested peptides per
541 sample were transferred into a new reaction tube, vacuum-dried and stored at -20 °C

542 until HPLC-MS/MS analysis.

543 The purified tryptic peptides were dissolved in 0.1% (v/v) formic acid in high
544 purity water. Approximately 1 pg of peptides were separated by an online
545 reversed-phase HPLC (Thermo Scientific Dionex Ultimate 3000 RSLC nano LC system)
546 connected to a benchtop Quadrupole Orbitrap (Q-Exactive Plus) mass spectrometer
547 (Thermo Fisher Scientific). The separation was carried on an Easy-Spray analytical
548 column (PepMap RSLC C18, 2 pm, 100 A, 75 um i.d. x 50 cm, Thermo Fisher Scientific)
549 with an integrated emitter, and the column was heated to 55°C. The LC gradient was set
550 to a 140-min gradient method, with a flow rate of 300 nL/min. The LC gradient was set
551 to 5 - 50% buffer B (v/v) [79.9% ACN, 0.1% formic acid, 20% Ultra high purity (MilliQ)]

552 for 125 min, and then to 80% buffer B over 5 min.

553 LC eluent was introduced into the mass spectrometer through an Easy-Spray ion
554 source (Thermo Scientific), with the emitter operated at 1.9 kV. The mass spectra were
555 measured in positive ion mode applying a top fifteen data-dependent acquisition
556 (DDA). A full mass spectrum was set to 70,000 resolution at m/z 200 [Automatic Gain
557 Control (AGC) target at 1e6, maximum injection time (IT) of 120 ms and a scan range
558 400-1600 (m/z)]. The MS scan was followed by a MS/MS scan at 17,500 resolution at

559 m/z 200 (AGC target at 5e4, 1.6 m/z isolation window, and maximum IT of 80 ms). For
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560 MS/MS fragmentation, normalised collision energy (NCE) for higher energy collisional
561 dissociation (HCD) was set to 27%. Dynamic exclusion was set at 40 s, and unassigned
562 and +1, +7, +8, and > +8 charged precursors were excluded. The intensity threshold was
563 set to 6.3e3, and isotopes were excluded. The analysis was performed with 5

564 independent experimental replicates for each sample.

565 Peptide identification and quantification

566 Identities and peptide features were defined by the peptide search engine
567 Adromeda, which was provided by the MaxQuant-software (Version 2.1.3.0, Max
568 Planck Institute of Biochemistry) using standard settings (Tyanova et al., 2016b). In
569 detail, trypsin based digestion of the peptides with up to two missing cleavage sites
570 were selected. Methinonine-oxidation as well as N-terminal acetylation was set as
571 variable modifications for peptide identification. In total, up to three potential
572 modification sites per peptide were accepted. The identified peptide sequences were
573 searched and aligned against the Araportll (Cheng et al., 2017) reference protein
574 database. The FDR cut-off for protein identification and side identification was set to
575 0.01. The minimum peptide length was 7 AA and the maximum length was 40 AA. For
576 each identified protein group, label-free quantitation intensities were calculated and

577 used for further analysis (Supplementary Table 4).

578 Potential contaminants and reverse sequenced peptides were removed before
579 statistical analysis. Only proteins that were detected in at least three out of five
580 replicates in at least one treatment group were considered for statistical analysis, which
581 was performed using the Perseus (Version 2.0.7.0) (Tyanova et al., 2016a). Missing

582 values were replaced by sampling from a normal distribution using the default settings.
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583 Protein groups with an absolute fold change of above 1.5 compared to the control and a
584 FDR value below 0.05 were considered as significantly regulated (Supplementary Table

585 4).

586 To filter for Ca**-regulated proteins, significantly up (down) regulated proteins in
587 La’* + H,0, compared to La’ only treated samples were subtracted from the list of
588 significantly up (down) regulated proteins in H,O, treated samples. An additional
589 filtering step was performed to ensure a compelling difference in abundance between
590 the two contrasts. This required that abs(L, - L,) > 1, where L, = log fold change for H,O,
591 vs mock and L, = log fold change for La** + H,O, treatment vs La’> only. For each of the
592 protein groups that passed the filters, we extracted all identifiers in the group. For
593 identifiers which occurred in multiple groups, we removed the identifier from the

594 group where it occurred the least.

595 CKN network analysis

596 For each Ca**-dependent redox-responsive protein group (target), we identified
597 the closest nodes upstream that have a known Ca** signalling association (source). This
598 was done by identifying all shortest paths in CKN with the source nodes set as all genes
599 with Ca* signalling related GoMapMan (Ramsak ef al., 2014) annotations and the target
600 set as the Ca* dependent H,O, responsive peptides. The GoMapMan annotations
601 considered were '30.3 - signalling.calcium', '34.21 - transport.calcium', and '34.22 -
602 transport.cyclic nucleotide or calcium regulated channels'. For each target, we kept the
603 source(s) with the shortest paths to the target (the “closest” upstream potential Ca*

604 interactors). We used the CUT-tool on the merged network to determine the cut set
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605 between all the source nodes and each target. The capacity on the edges was set as the

606 edge rank + 1 (highly ranked edges are more likely to be in the cut set).

607 All source and target nodes are listed in Supplementary Table 4. Analysis was
608 performed in Python using the networkx (Hagberg et al., 2008) library and visualised in

609 Cytoscape (Cline et al., 2007) using the py4cytoscape (Keiichiro Ono et al.) library. All

610 code is available in the SKM-tools repository (https://github.com/NIB-5I/skm-tools).

611 Gene identifiers

612 All genes mentioned in the article are listed with their gene identifiers in

613 Supplementary Table 10.
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816 Supplementary information

Name File name Description

Supplementary S01_SupplementaryTablel_ComparativeResources.xIsx A non-exhaustive list of complementary,

Table 1 comparative, and integrated resources of SKM.

Supplementary 502_SupplementaryTable2 CKNv2-sources.xlsx List of sources of CKN-v2 interactions.

Table 2

Supplementary S03_SupplementaryFigurel_MotifsAtRD29A-5tRD29.pdf Visualisation of abiotic stress related

Figure 1 cis-regulatory binding motifs for AtRD29A and
StRD29.

Supplementary S04_SupplementaryFigure2_ABA-response-of-StRD29.pd  Microscopic (CLSM) analyses of ABA

Figure 2 f response of S5t-RD29::mScarletl, showing that
ABA activates St-RD29::mScarletl in stomata of
potato plants.

Supplementary S05_SupplementaryTable3_Luminescence-RD29-synergist Luminescence data for case study 1 showing

Table 3 ic.xlsx StRD29 expression induction by ABA, and
validation of the hypothesis of synergistic
activity of combinatorial jasmonates and SA in
attenuation of expression.

Supplementary S06_SupplementaryDatal_Case-studies-Cytoscape.cys Case study 1 (PSS) and Case study 2 (CKN)

Data 1 network analysis results provided in a
Cytoscape session.

Supplementary S07_SupplementaryTable4_Case-study-2-Proteomics- Case study 2 proteomics data, processed

Table 4 and-CKN-analysis.xlsx proteomics data, gene descriptions, and CKN
network analysis results.

Supplementary S08_SupplementaryTable5_PSS-schema.xlsx PSS database schema description.

Table 5

Supplementary S09_SupplementaryTable6_PSS-sources.xlsx List of sources of PSS v1.0.0 interactions.

Table 6

Supplementary S510_SupplementaryTable7_Luminescence-RD29.xlsx Luminescence data for case study 1 showing

Table 7 StRD29 expression induced by ABA,
attenuated by addition of jasmonates or SA.

Supplementary S11_SupplementaryFigure3_Vector-StRD29-fluc-and-StR  Visualisation of the features of Vector pBibHyg

Figure 3 D29-mScarletl.pdf carrying StRD29::fluc and StRD29::mScarletl.

Supplementary S12_SupplementaryTable8_Primer-sequences.xlsx Gene identifiers and primer sequences for

Table 8 transcript analysis.

Supplementary S13_SupplementaryTable9_RD29-qPCR.xIsx Relative gene expression of RD29 in potato and

Table 9 Arabidopsis after treatment with ABA, JA or
their combination.

Supplementary S14_SupplementaryTable10_Gene-identifiers.xlIsx Genes and gene identifiers mentioned in the

Table 10 article.
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