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 Stress Knowledge Map 

 Abstract 

 Stress  Knowledge  Map  (SKM,  https://skm.nib.si  )  is  a  publicly  available  resource 

 containing  two  complementary  knowledge  graphs  describing  current  knowledge  of 

 biochemical,  signalling,  and  regulatory  molecular  interactions  in  plants:  a  highly 

 curated  model  of  plant  stress  signalling  (PSS,  543  reactions)  and  a  large  comprehensive 

 knowledge  network  (CKN,  488,390  interactions).  Both  were  constructed  by  domain 

 experts  through  systematic  curation  of  diverse  literature  and  database  resources.  SKM 

 provides  a  single  entrypoint  for  plant  stress  response  investigations  and  the  related 

 growth  tradeoffs.  SKM  provides  interactive  exploration  of  current  knowledge.  PSS  is 

 also  formulated  as  qualitative  and  quantitative  models  for  systems  biology,  and  thus 

 represents  a  starting  point  of  a  plant  digital  twin.  Here,  we  describe  the  features  of  SKM 

 and  show,  through  two  case  studies,  how  it  can  be  used  for  complex  analyses,  including 

 systematic  hypothesis  generation,  design  of  validation  experiments,  or  to  gain  new 

 insights into experimental observations in plant biology. 

 Keywords:  knowledge graph, database, plant stress  responses, plant signalling, systems biology, 

 digital plant 
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 Stress Knowledge Map 

 Introduction 

 The  already  apparent  effects  of  climate  change  on  agriculture  (Shukla  et  al  .),  the 

 spread  of  pests  into  new  regions  (Garrett,  2013;  IPPC  Secretariat,  2021),  and  rapid 

 population  growth  (UN  DESA,  2022)  provide  immediate  challenges  to  global  food 

 security  (Steinwand  and  Ronald,  2020).  Projections  show  that  in  order  to  meet  2050 

 demand,  an  increase  in  crop  production  of  up  to  75%  is  required  (Hunter  et  al  .,  2017). 

 This  can  be  achieved  with  yield  improvements  through  the  development  of  stress 

 resilient  crops,  a  process  requiring  a  holistic  understanding  of  the  effect  of  stressors  on 

 plants.  The  rapid  development  of  modern  ‘omics’  technologies  allows  for  the 

 generation  of  large  and  complex  datasets,  characterising  system  wide  responses.  To 

 understand  the  biological  meaning  of  these  large-scale  data  sets  and  generate 

 meaningful  hypotheses,  contextualisation  within  current  knowledge  is  needed.  We 

 have  assembled  an  integrated  resource  of  plant  signalling,  S  tress  K  nowledge  M  ap 

 (SKM,  https://skm.nib.si  ),  that  provides  a  single,  up-to-date  entrypoint  for  plant 

 response investigations. 

 SKM  integrates  knowledge  on  plant  molecular  interactions  and  stress  specific 

 responses  from  a  wide  diversity  of  sources,  combining  recent  discoveries  from  journal 

 articles  with  knowledge  already  existing  in  resources  such  as  KEGG  (Kanehisa  et  al  ., 

 2016),  STRING  (Szklarczyk  et  al.  ,  2023),  MetaCyc  (Caspi  et  al  .,  2016),  and  AraCyc 

 (Mueller  et  al.  ,  2003).  SKM  extends  other  aggregated  resources  (listed  in  Supplementary 

 Table  1),  including  the  heterogeneous  knowledge  graphs  of  KnetMiner  (Hassani-Pak  e  t 

 al.  ,  2021),  Biomine  Explorer  (Podpečan  et  al.  ,  2019),  and  ConsensusPathDB  (Herwig  et 

 al.  ,  2016),  in  that  it  allows  conversion  of  biochemical  knowledge  to  diverse 
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 Stress Knowledge Map 

 mathematical  modelling  formalisms  and  integration  with  multi-omics  experiments, 

 besides  allowing  interactive  exploration  of  current  knowledge  that  is  constantly 

 reproducibly  updated.  SKM  is  a  versatile  resource  that  assists  diverse  users,  from  plant 

 researchers  to  crop  breeders,  in  investigating  current  knowledge  and  contextualising 

 new  datasets  in  existing  plant  research.  A  number  of  tools  were  developed  within  the 

 SKM environment to support this, and enable efficient linking to complementary tools. 

 Results 

 SKM  is  a  resource  combining  two  knowledge  graphs  resulting  from  the 

 integration  of  dispersed  published  information  on  current  biochemical  knowledge:  the 

 P  lant  S  tress  S  ignalling  model  (PSS)  and  the  C  omprehensive  K  nowledge  N  etwork 

 (CKN)  of  plant  molecular  interactions.  SKM  enables  interactive  exploration  of  its 

 contents,  and  represents  a  basis  for  diverse  systems  biology  modelling  approaches, 

 from network analysis to dynamical modelling. 

 The Plant Stress Signalling model (PSS) 

 PSS  is  an  ongoing  endeavour  to  assemble  an  accurate  and  detailed  mechanistic 

 model  of  plant  stress  signalling  by  extracting  validated  molecular  interactions  from 

 published  resources  (Miljkovic  et  al  .,  2012;  Ramšak  et  al  .,  2018).  Currently  PSS  covers  the 

 complete  stress  response  cascade  within  the  plant  cell  (Fig.  1),  initiating  with  abiotic 

 (heat,  drought,  and  waterlogging)  and  biotic  stressors  (extracellular  pathogens, 

 intracellular  pathogens,  and  necrotrophs;  Layer  1).  Perception  of  these  stressors  through 

 diverse  receptors  (Layer  2)  initiates  Ca2+,  ROS,  and  MAPK  signalling  cascades,  as  well 

 as  phytohormone  biosynthesis  and  signalling  pathways  (Layer  3).  These  translate 
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 Stress Knowledge Map 

 perception  into  a  cellular  response,  resulting  in  activation  of  processes  which  execute 

 protection  against  stress  (Layer  4).  Within  and  across  these  layers,  relevant 

 transcriptional  (transcription  factors  known  to  act  downstream  of  phytohormones)  and 

 posttranscriptional  (e.g.  smallRNA-transcript  regulation  known  to  participate  in  stress 

 signalling)  regulation  is  included.  To  capture  the  relations  between  stress  responses  and 

 growth  and  development,  PSS  also  contains  the  major  known  regulators  of  growth 

 (Target  Of  Rapamycin  (TOR)  signalling)  all  hormonal  signalling  pathways  and  major 

 primary  metabolism  processes.  Finally,  tuberisation  signalling  from  potato  is  included 

 as an example for evaluating potential impact on crop yields. 

 PSS  is  primarily  based  on  the  model  plant  Arabidopsis  (  Arabidopsis  thaliana  ),  and 

 also  contains  pertinent  information  from  several  crop  species,  most  comprehensively 

 potato  (  Solanum  tuberosum  ).  PSS  currently  includes  1,425  entities  and  543  reactions,  a 

 substantial  update  from  the  preceding  model  of  212  entities  and  112  reactions  (Ramšak 

 et  al  .,  2018).  PSS  entities  include  genes  and  gene  products  (proteins,  transcripts, 

 smallRNAs),  complexes,  metabolites,  and  triggers  of  plant  stress.  Genetic  redundancy 

 (Cusack  et  al  .,  2021)  is  incorporated  using  the  concept  of  functional  clusters  –  groups  of 

 genes  (possibly  across  species)  that  are  known  to  mediate  the  same  function(s). 

 Interactions  between  these  entities  include  protein-DNA  (e.g.  transcriptional 

 regulation),  smallRNA-transcript,  protein-protein  interactions,  as  well  as  enzymatic 

 catalysis  and  transport  reactions.  The  majority  of  these  interactions  were  compiled  from 

 peer-reviewed  manuscripts  with  targeted  experimental  methodology,  giving  them  a 

 high  degree  of  confidence.  PSS  also  contains  relevant  signalling  associated  pathways 

 from KEGG (Kanehisa  et al.  , 2016) and AraCyc (Mueller  et al  ., 2003). 
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Figure 1. Contents of the Plant Stress Signalling model (PSS) represented as conceptual layers. 
From top to bottom: stressors (Layer 1) acting on the plant are first perceived (Layer 2), resulting in a signalling (Layer 3) 
cascade, that leads to plant defence and/or adaptive changes in the form of executor molecules and processes (Layer 4, 
examples listed below each group). 
ABA: Abscisic Acid; ADH1: Alcohol Dehydrogenase 1; CK: Cytokinin; ET: Ethylene; GA: Gibberellic Acid; HSP: Heat 
Shock Protein; IAA: Indole-3-acetic acid (Auxin); JA: Jasmonic Acid; MC: Multicystatin, PCPI: Potato Cysteine Proteinase 
Inhibitor; PR: Pathogenesis Related; ROS: Reactive Oxygen Species; SA: Salicylic Acid; TOR: Target Of Rapamycin.
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 Stress Knowledge Map 

 The Comprehensive Knowledge Network (CKN) 

 Complementary  to  PSS,  CKN  is  a  large-scale  condition-agnostic  assembly  of 

 current  knowledge,  offering  broader  insights  into  not  only  stress  signalling,  but  also 

 any  other  plant  process.  CKN  is  a  network  of  experimentally  observed  physical 

 interactions  between  molecular  entities,  encompassing  protein-DNA  interactions, 

 interactions  of  smallRNA  with  transcripts,  post-translational  modifications,  and 

 protein-protein  interactions  (Table  1)  in  Arabidopsis.  Here,  we  present  an  update  to  the 

 previous  version  with  20,012  entities  and  70,091  interactions  (Ramšak  et  al  .,  2018),  to  the 

 current  version  which  provides  30%  more  entities  (26,234  entities)  and  an  almost  7-fold 

 increase  in  the  number  of  molecular  interactions  (488,390  unique  interactions,  Table  1). 

 The  entities  in  CKN  include  24,829  genes,  out  of  38,202  registered  in  Araport11  (Cheng 

 et al  ., 2017). 

 During  the  update,  only  STRING  was  found  to  be  altered  since  2018  (updated  to 

 v11.5  in  2021),  and  thus  re-integrated.  Additionally,  nine  novel  sources  of  information 

 were  added,  bringing  the  total  number  of  sources  CKN  integrates  to  25  (Supplementary 

 Table  2).  Interactions  are  annotated  with  the  interaction  type  and  whether  the 

 interaction  has  directionality  (e.g.  undirected  binding  vs  transcription  factor 

 regulation).  A  ranking  system  for  the  interaction  reliability  (Table  1  legend),  allows 

 researchers  to  evaluate  how  biologically  credible  and  relevant  individual  interactions 

 are.  CKN  includes  all  relevant  reactions  from  PSS  to  allow  for  a  direct  comparison  of 

 results obtained through both networks. 
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 Stress Knowledge Map 

 Table 1: Counts of unique CKN interactions by type and reliability ranking 
 Rank meanings: 0 – manually curated interactions from PSS, 1 – literature curated interactions detected 
 using multiple complementary (mostly targeted) experimental methods (e.g. luciferase reporter assay, 
 co-immunoprecipitation, enzymatic assays), 2 – interactions detected solely using high-throughput 
 technologies (e.g. high-throughput yeast two-hybrid, chromatin immunoprecipitation sequencing, 
 degradome sequencing), 3 – interactions extracted from literature (co-citation, excluding text mining) or 
 predicted  in silico  and additionally validated with data, 4 – interactions predicted using purely  in silico 
 binding prediction algorithms. See Supplementary Table 2 for a detailed list of sources. 

 Number of 
 resources 

 Rank 
 Total 

 0  1  2  3  4 

 Interaction 
 type 

 binding  13  650  24,054  30,442  343,401  31,253  429,800 

 transcription factor 
 regulation  9  480  1,442  8,567  174  11,869  22,532 

 small RNA 
 interactions  3  -  48  41  34,059  -  34,148 

 post-translational 
 modification  2  754  393  192  -  -  1,339 

 other  a  1  571  -  -  -  -  571 

 Total  25  b  2,455  c  25,937  39,243  377,634  43,122  488,390 
 a  Includes interactions from PSS that do not fall  into the previous categories. 
 b  Some resources contain multiple interaction types. 
 c  Includes interactions expanded from 335 PSS functional  clusters to 2253 individual genes. 

 SKM environment and features 

 To  enable  accessibility  and  exploitation  of  the  resources  within  SKM  we  have 

 developed  an  encompassing  environment  (Fig.  2).  The  main  features  include  content 

 exploration  and  visualisation,  access  to  various  export  formats,  and  the  ability  to 

 contribute  improvements  based  on  novel  biological  knowledge.  The  SKM  webpage  is 

 publicly available at  https://skm.nib.si/  . 

 Exploration.  SKM  implements  a  number  of  options  for  the  exploration  of  its 

 contents,  including  interactive  network  visualisations  of  both  PSS  (PSS  Explorer,  Fig. 

 2C)  and  CKN  (CKN  Explorer,  Fig.  2F),  offering  neighbourhood  extraction  of  selected 

 entities,  shortest  path  detection  between  multiple  entities  of  interest,  and  on  the  fly 

 exports. Both Explorers provide direct references to the object provenance, as well as 
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Figure 2. Stress Knowledge Map environment and features.
New validated biological interactions (e.g. transcriptional and translational regulation of a target gene) from various sources 
(A) can be added to PSS through the guided contribution interface (B), and are consolidated according to the PSS schema. 
The contents of PSS can be explored through interactive search and visualisation provided by both the PSS Explorer (C) and 
the PSS overview in Newt (D). Correspondingly, sources for CKN interactions (E) are integrated and consolidated to the 
CKN schema through batch scripts, and are accessible for exploration through the CKN Explorer (F) which provides 
interactive search and visualisation of CKN interactions. Data provenance and interoperability links (G) provide context for 
SKM contents. Exports of PSS and CKN (H) enable various additional analysis and modelling approaches, including 
through the Python functions provided in the SKM-tools resource (I). 
Links to specific external resources and tools are highlighted in red. HT – high-throughput; PSS – Plant Stress Signalling 
network; CKN – Comprehensive Knowledge Network; TF – transcription factor; ncRNA – non-coding ribonucleic acid; 
DOT/SBGN/SBML/SIF – Systems Biology data formats, see Table 3 for details.
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 links  for  the  corresponding  Arabidopsis  genes  within  KnetMiner  knowledge  base 

 (Hassani-Pak  et  al.  ,  2021),  providing  even  broader  context.  An  additional  visualisation 

 of  the  complete  PSS  model,  showing  biological  pathways,  is  available  in  the  Newt 

 Viewer  (Fig.  2D).  A  separate  search  interface  utilising  internal  and  external  database 

 identifiers (e.g. DOI, KEGG) is also available for PSS. 

 Modelling  and  analysis  support.  PSS  is  available  for  download  in  a  number  of 

 domain  standard  formats  (Fig.  2H;  summarised  in  Table  3)  enabling  further 

 visualisations,  analysis,  and  dynamical  modelling.  A  suite  of  tools  implemented  in 

 Python  (SKM-tools,  Fig.  2I)  was  developed  to  support  additional  network  analysis  of 

 CKN and PSS (described in Table 4). 

 Table 3:  Supported exports of SKM knowledge graphs. 

 Format  Description  Available for 

 SBGN-ML  Systems  Biology  Graphical  Notation  XML  format, 
 enabling  graphical  visualisation  of  models 
 (Bergmann  et al  ., 2020). 

 PSS 

 SBML  Systems  Biology  Markup  Language  XML  format, 
 enabling mechanistic modelling (Keating  et al  ., 2020). 

 PSS 

 DOT  Graph  description  language,  compatible  with 
 Graphviz  applications  (Gansner  and  North,  2000) 
 (graphviz.org). 

 PSS 

 SIF  /  LGL  Simple  Interaction  Format/Large  Graph  Format, 
 compatible  with  Cytoscape  (Shannon  et  al.  ,  2003)  and 
 DiNAR  (Zagorščak  et al  ., 2018). 

 PSS, CKN 

 boolnet  Boolean  network  format  for  logical  modelling 
 compatible  with  pyboolnet  (Klarner  et  al  .,  2017),  and 
 BoolNet  (Müssel  et al  ., 2010) among others. 

 PSS 
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 Table 4:  Features of SKM-tools. 

 Functionality  Description 

 Load  Directly create networkX (Hagberg  et al  ., 2008) graph objects for PSS or 
 CKN, thus providing access to the multitude of graph analysis and graph 
 operations available in the library. 

 Tissue specificity 
 node filter 

 For PSS and CKN, filter on node type or node origin (plant or foreign), and 
 additionally for CKN filter nodes based on tissue specificity, creating a 
 network specific to the biological question at hand. 

 Edge reliability 
 filter 

 Filter CKN edges by rank, removing less reliable edges as the situation 
 requires. 

 Network analysis  Standard node based analysis approaches, such as neighbourhood 
 extraction (identifying the immediate interactors of a node) and shortest 
 path analysis (identifying directed or undirected paths between source and 
 target nodes of interest). 

 CUT-tool  CUT-tool provides information on which genes are needed to be perturbed 
 (knock-out, knock-down or overexpress) in order to modulate the response 
 of the network. 

 Cytoscape 
 Automation 

 Loading of networks and subnetworks into Cytoscape(Otasek  et al  ., 2019). 
 Functionalities include providing default styling, node, edge, and path 
 highlighting, network layout from coordinates, and pdf exporters. 

 Multi-omics data 
 visualisation 

 Import of multi-omics experimental data tables (e.g. logFC and p-values) as 
 context to the networks, and functionality to visualise experimental data 
 associated with nodes in the network, through rendering of PNG’s (e.g. 
 heatmaps) in the Cytoscape view. 

 Link to DiNAR  Instructions for the use of CKN or PSS as the prior knowledge network  for 
 integration and visualisation of multiple condition high-throughput data in 
 the DiNAR application (Zagorščak  et al  ., 2018). 

 Extending  and  improving  SKM.  The  contribution  interface  of  PSS  allows  for 

 constant  updates  based  on  novel  discoveries  (Fig.  2B).  Registered  users  can  add  new 

 entities  and  interactions  to  PSS  through  guided  steps,  and  expert  curators  are  able  to 

 make  corrections.  For  major  updates  to  PSS,  a  batch  upload  option  is  also  available.  The 

 contribution  interface  automatically  retrieves  GoMapMan  (Ramšak  et  al  .,  2014)  gene 

 descriptions  and  short  names,  as  well  as  article  metadata  via  DOI  or  PubMed  ID, 

 simplifying the contribution process. 

 FAIRness.  SKM  has  been  developed  with  the  FAIR  principles  (Findable, 

 Accessible,  Interoperable,  and  Reusable)  (Wilkinson  et  al.  ,  2016)  at  the  forefront.  SKM  is 
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 indexed  in  FAIDARE  (FAIR  Data-finder  for  Agronomic  Research; 

 https://urgi.versailles.inra.fr/faidare/search?db=SKM  ),  listed  in  both  bio.tools 

 (  https://bio.tools/skm  )  and  FAIRsharing.org  (  https://fairsharing.org/4524  ),  and 

 registered  at  identifiers.org  (  https://registry.identifiers.org/registry/skm  ).  Aside  from 

 the  downloads,  a  GraphQL  endpoint  is  available  for  programmatic  access  to  PSS.  SKM 

 also  utilises  stable  reaction  and  functional  cluster  identifiers.  Data  provenance  is 

 maintained  by  storing  links  to  input  data  through  DOIs  and  external  database 

 references (Fig 2G). 

 Case studies 

 To  showcase  the  benefits  of  SKM,  we  present  two  case  studies  utilising  SKM  for 

 contextualisation  of  experimental  results  within  prior  knowledge  networks.  The  first 

 case  study  concerns  jasmonates  (JA)  and  salicylic  acid  (SA)  interference  with  abscisic 

 acid  (ABA)-mediated  activation  of  RESPONSIVE  TO  DESICCATION  29  (  RD29  ) 

 transcription, and the second a proteomics analysis of Ca  2+  -dependent redox responses. 

 Case study 1: Interaction of ABA, JA, and SA in the activation of  RD29  transcription 

 In  Arabidopsis,  the  RESPONSIVE  TO  DESICCATION  29  A  gene  (At  RD29A  ) 

 plays  a  pivotal  role  in  stress  acclimation  (Baker  et  al.  ,  1994)  and  is  transcriptionally 

 regulated  via  several  promoter  elements,  including  the  ABA  responsive  binding  motif 

 ABRE  (ACGTG),  located  close  to  the  transcription  initiation  site.  The  1  kbp  upstream 

 region  of  the  potato  St  RD29  transcription  initiation  site  also  contains  the 
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 ABA-responsive  binding  motif  ABRE,  and  several  other  abiotic  stress  responsive 

 binding elements (Supplementary Figure 1). 

 Treatment  of  leaf  discs  from  tobacco  plants  transiently  transformed  with 

 pSt  RD29::fluc  and  transgenic  potato  plants  (cv.  Désirée)  carrying  the  pSt  RD29::mScarlet-I 

 (Supplementary  Figure  2)  construct  showed  that  pSt  RD29  activity  was  strongly  induced 

 by  ABA,  and  reached  its  highest  amplitude  after  approximately  four  hours  in  the  ABA 

 solution  (Fig.  3A).  Treatments  with  either  jasmonate  (JA)  or  salicylic  acid  (SA)  alone  did 

 not  lead  to  an  increase  in  pSt  RD29  activity.  However,  combined  treatments  of  ABA  with 

 JA  or  ABA  with  SA  attenuated  the  ABA  induced  activation  of  pSt  RD29  ,  indicating  a 

 negative  impact  of  both  these  phytohormones  on  ABA  dependent  St  RD29  transcription 

 (Fig.  3A).  We  subsequently  constructed  transgenic  potato  plants  (cv.  Désirée)  carrying 

 the  pSt  RD29::fluc  construct  to  confirm  the  negative  impact  of  MeJA  and  SA  on  the  ABA 

 responsive  promoter  activity  in  planta  (Fig.  3B).  The  impact  of  MeJA  on  the  ABA 

 activation  of  both  RD29  was  further  analysed  in  potato  and  Arabidopsis  by  RT-qPCR  . 

 The  data  revealed  that  both  species  display  an  attenuation  of  the  ABA  induction  of 

 RD29A/RD29  by jasmonates (Fig. 3C). 

 We  first  tried  to  explain  the  observed  impact  of  jasmonates  and  SA  on 

 ABA-dependent  RD29  activation  through  motif  analysis  of  the  promoter,  but  no  SA  or 

 JA  signalling  related  motifs  were  identified  in  the  potato  promoter  sequence 

 (Supplementary  Figure  1).  Thus  we  hypothesised  that  the  signalling  pathways  interact 

 upstream  from  actual  transcriptional  activation.  Due  to  the  complexity  of  several 

 phytohormone  pathway  interactions,  this  is  a  good  case  study  for  the  hormone-centric 

 and expert curated PSS model. We performed a triple shortest path analysis analysis to 
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Figure 3: Elucidating connections from JA and SA to ABA-mediated regulation of RD29 expression in potato.
(A/B) Expression of firefly luciferase driven by the StRD29 promoter (pStRD29::fluc) in transiently transformed tobacco 
leaves (A) and transgenic potato leaves (B). Luciferase activity was analysed in response to single and combined 
phytohormone treatments as indicated (50 µM MeJA, 50 µM ABA and 50 µM SA). Values are shown as mean ± SE.
(C) Relative transcript abundance of StRD29 (left panel) and AtRD29A (right panel) six hours after application of 50 µM 
ABA, 50 µM MeJA or combination of both, analysed by RT-qPCR. Bars represent mean values ± SE of 3-4 independent 
biological replicates. 
(D) PSS node-induced subnetwork of shortest paths and immediate neighbours. Paths are directed from the hormones 
(source) to RD29 (target). Nodes and edges are coloured by the path source: ABA (brown), JA (green), and SA (blue). Edges 
to first neighbours, edges not on the directed shortest paths, and shared neighbourhood nodes are indicated in grey. Solid 
edges indicate activation (arrow head) or inhibition (T head), dashed edges represent binding, and dot-dash edges transport. 
The explorable networks for case study 1 are provided in Supplementary Data 1.
(E) Validation of the hypothesis presented in (D). Concentrations of hormones are 50 µM ABA, 15 µM MeJA, and 30 µM 
SA. Luciferase activity at 5 hours shown (see Supplementary Table 3 for complete response curve). The results show SA and 
jasmonates indeed act synergistically on attenuation of ABA signalling, as the addition of SA and jasmonates has a stronger 
effect than the addition of each hormone individually.
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 identify  potential  mechanisms  of  studied  crosstalk.  The  analysis  revealed  an 

 intersection  of  JA  signalling  with  the  ABA  pathway  through  a  protein-protein 

 interaction  of  the  JA-responsive  MYC-like  transcription  factor  2  (MYC2)  with  the  ABA 

 receptor  PYRABACTIN  RESISTANCE  LIKE  6  (PYL6;  Fig.  3D).  This  reaction  entry 

 (  rx00459  )  is  based  on  experimental  in  vitro  and  in  vivo  interaction  studies  of  PYL6  and 

 MYC2  in  Arabidopsis  (Aleman  et  al  .,  2016).  It  could  be  conceived  that  this  interaction 

 depletes  PYL,  thereby  limiting  ABA  perception(Aleman  et  al  .,  2016),  which  could 

 explain  lower  activation  of  the  ABA  pathway  in  the  presence  of  jasmonates.  The  SA 

 pathway  was  found  to  converge  with  the  ABA  pathway  through  the  JA  pathway  with  a 

 protein-protein  interaction  between  the  SA  receptor  NPR1  and  MYC2  (  rx00432  ) 

 (Nomoto  et  al.  ,  2021)  and  this  might  influence  the  interaction  of  MYC  with  PYL.  To 

 verify  the  hypothesis  of  direct  synergism  between  JA  and  SA  in  the  attenuation  of  the 

 ABA  response,  we  performed  titration  experiments  of  combined  JA  and  SA  treatment 

 on  ABA-dependent  St  RD29  induction  which  was  confirmed  (Fig.  3E,  Supplementary 

 Table 3). 

 Case  study  2:  The  impact  of  Ca  2+  channel  inhibitor  LaCl  3  on  proteome-wide  peroxide 

 responses 

 Secondary  messengers,  such  as  Ca  2+  and  H  2  O  2  ,  are  important  in  the  translation  of 

 many  perceived  environmental  changes  towards  a  cellular  response  (Kudla  et  al  .,  2010; 

 Pirayesh  et  al  .,  2021).  It  is  still  a  challenge  to  disentangle  and  understand  the  principles 

 of  specificity  and  information  flow  in  such  networks.  Lanthanide  ions  are  known  to 

 block  anion  channels  and  inhibit  the  flux  of  Ca  2+  across  the  plasma  membrane  (Knight 

 et  al  .,  1992;  Tracy  et  al  .,  2008).  Thus,  they  can  be  used  to  identify  Ca  2+  -dependent  plant 

 responses.  H  2  O  2  is  known  to  induce  Ca  2+  transients  (Rentel  and  Knight,  2004).  In  this 

 14 

 205 

 206 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 28, 2023. ; https://doi.org/10.1101/2023.11.28.568332doi: bioRxiv preprint 

https://skm.nib.si/biomine/?reaction_id=rx00459
https://skm.nib.si/biomine/?reaction_id=rx00432
https://doi.org/10.1101/2023.11.28.568332
http://creativecommons.org/licenses/by/4.0/


 Stress Knowledge Map 

 case  study,  we  analysed  the  proteome  of  Arabidopsis  rosettes  treated  with  either  H  2  O  2 

 or  a  combination  of  H  2  O  2  and  LaCl  3  to  identify  the  components  of  H  2  O  2  signalling  that 

 are  Ca  2+  -dependent.  We  initially  identified  119  proteins  that  showed  significantly 

 changed  abundances  in  response  to  H  2  O  2  compared  to  mock  treatment  after  10  or  30 

 min  of  treatment.  Out  of  these,  49  proteins  did  not  significantly  respond  in  the  same 

 manner  upon  pretreatment  with  LaCl  3  (Supplementary  Table  4),  indicating  that  a 

 significant  number  of  H  2  O  2  induced  changes  in  protein  abundance  required  a  Ca  2+ 

 signal (Ca  2+  -dependent redox-responsive proteins). 

 In  the  quest  to  identify  mechanistic  explanations  behind  these  results,  CKN 

 provides  a  universal  resource  for  large-scale  hypothesis  generation.  The  largest 

 connected  component  of  CKN  contains  98%  of  the  nodes  and  99%  of  the  edges, 

 indicating  its  high  connectivity,  thus  the  analysis  was  performed  on  this  part  of  CKN 

 only.  Using  CKN  pre-filtered  to  only  leaf-expressed  genes,  we  searched  for  directed 

 shortest  paths  from  known  Ca  2+  signalling  related  proteins  (source  set)  to  the 

 Ca  2+  -dependent  redox-responsive  proteins  identified  by  the  proteomics  approach 

 (target  set).  The  final  source  set  of  53  genes  included  mainly  calmodulins, 

 Ca  2+  -dependent  protein  kinases,  and  calcineurin  B-like  proteins  CBLs  (Supplementary 

 Table  4).  Of  the  49  Ca  2+  -dependent  redox-responsive  target  proteins,  41  were  present  in 

 CKN.  All  of  these  proteins  could  either  be  connected  to  the  source  set  of  Ca  2+  signalling 

 related  proteins  directly  or  through  an  up  to  4-step  pathway  (Fig.  4A),  or  were  in  the 

 source  set  themselves.  Combining  all  the  detected  shortest  paths  (all  sources  to  all 

 targets)  into  a  single  network  (Fig.  4A)  revealed  major  network  hubs  –  connected  to 

 multiple known Ca  2+  signalling genes and potentially regulating multiple targets. 
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Figure 4: Deciphering the Ca2+ dependent network in peroxide signalling. 
(A) All shortest paths identified in CKN leading from known Ca2+ related proteins (sources - pink bordered nodes) to Ca2+-
dependent redox-responsive proteins identified by proteomics (targets - green filled nodes) using rank 0, rank 1, and rank 2 
edges (as described in Table 1 legend), merged into a single network. 
The excerpts show (B) a subnetwork with a focus on calmodulins, and (C) a subnetwork with a focus on LFY3 and ASN1. 
Solid edges with arrowheads indicate directed, regulatory interactions (see Table 1), while dashed edges indicate undirected 
binding. Red edges are part of the merged cut-set. Nodes with proteomics measurements are annotated with a heatmap 
indicating change in protein abundance after 10 min (top row), after 30 min (bottom row) between H2O2 and mock treated 
samples (left column) and between Ca2+ blocker treatment and H2O2 and Ca2+ blocker treatment (right column). Significant 
changes in abundance are marked with an asterisk in the centre of the square. Red – increase in treatment compared to 
control, blue – decrease in treatment compared to control. Nodes are labelled with their short name, if it exists. The complete 
explorable networks are provided in Supplementary Data File 1, and all source and target nodes are listed in Supplementary 
Table 4. 
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 The  analysis,  for  example,  revealed  an  intricate  network  of 

 calmodulins-dependent  regulation  of  downstream  targets  in  Arabidopsis 

 (CAM2,3,5,6,7,  Fig.  4B),  Another  example  of  such  a  hub  is  Floricaula/leafy-like 

 transcription  factor  3  (  LFY3  )  shown  in  Fig.  4C,  which  integrates  paths  originating  from 

 four source nodes, and in turn potentially regulates four downstream targets. 

 The  next  step  in  the  analysis  would  be  confirmation  of  the  identified  mechanisms 

 with  functional  analysis  experiments,  e.g.  to  perform  knock-out  experiment(s)  and 

 confirm  the  role  of  the  proposed  regulatory  network.  The  design  of  such  experiments  is 

 however  not  always  trivial,  thus  we  designed  the  CUT-tool  within  SKM-tools,  to  aid 

 experimentalists.  This  analysis  reveals  the  minimum  interactions  that  are  necessary  to 

 be  severed  (“cut-set”)  in  order  to  separate  the  upstream  regulators  from  the 

 downstream  targets.  The  cut-set  to  disrupt  the  regulation  of  all  targets  are  shown  in  Fig 

 4A.  As  an  example,  the  cut-set  of  one  target,  glutamine-dependent  asparagine  synthase 

 1  (ASN1)  is  shown  in  Fig.  4C,  revealing  that  de-regulation  of  ASN1  would  require  the 

 knockout  of  both  LFY3  and  ARABIDOPSIS  NAC  DOMAIN  CONTAINING  PROTEIN 

 29 (NAP). 

 Discussion 

 Plant  stress  signalling  pathways  are  connected  by  synergistic  and  antagonistic 

 interactions  in  a  complex  network  that  checks  and  balances  the  plant’s  response  to  their 

 environment  and  its  growth/development  (Eckardt,  2015;  Bittner  et  al  .,  2022).  To 

 understand  the  functioning  of  these  complex  processes,  novel  approaches  are  required. 

 Knowledge  graphs,  such  as  those  provided  by  SKM,  provide  powerful  and  accessible 
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 tools  to  integrate  and  simplify  interpretations  within  curated  published  knowledge,  as 

 well  as  providing  a  basis  of  a  plant  digital  twin,  and  all  the  advantages  of  in  silico 

 simulation  experiments  it  enables.  A  number  of  tools  were  developed  within  the  SKM 

 environment to support this, and also enable efficient linking to complementary tools. 

 To  showcase  the  applicability  of  SKM,  we  investigated  two  distinct  experimental 

 datasets.  In  the  first,  our  experiments  showed  evidence  that  jasmonate  and  SA 

 treatment  attenuates  ABA  activated  transcription  of  RD29  in  both  the  crop  plant  potato 

 and  the  model  plant  Arabidopsis  through  hormonal  signalling  cross-talk  (Fig.  3).  A 

 manual  attempt  to  extract  known  information  on  crosstalk  between  ABA  and  JA  with  a 

 search  in  PubMed  (  (JA  OR  jasmon*)  AND  (ABA  OR  abscisic)  AND  (plant)  )  resulted  in 

 over  2,000  published  items.  With  the  wealth  of  data  generated  these  days,  it  would  be 

 laborious  for  an  individual  researcher  to  perform  a  thorough  literature  survey,  while 

 interrogation  of  SKM  provided  a  mechanistic  hypothesis  that  explains  the  experimental 

 results  within  hours.  The  hypothesis  was  experimentally  confirmed  and  gives  the 

 explanation  for  the  synergistic  action  of  jasmonates  and  SA  that  is  sometimes  argued 

 for  in  literature  (Mur  et  al  .,  2006;  Zhang  et  al  .,  2020).  Although  knowledge  compiled  in 

 SKM  is  predominately  based  on  Arabidopsis,  this  use  case  clearly  shows  its 

 applicability  in  other  species.  Through  orthology  tools  such  as  PLAZA  (Van Bel  et  al  ., 

 2022),  the  knowledge  graphs  in  SKM  can  be  translated  to  other  species,  as  was  done  for 

 the  previous  version  of  CKN  to  Prunus  persica  (Foix  et  al  .,  2021),  Solanum  tuberosum 

 (Ramšak  et  al.  ,  2018),  and  Nicotiana  benthamiana  (Juteršek  et  al  .,  2022).  This  way, 

 canonical principles of plant signalling networks can be assessed across species. 

 Our  second  case  study  showed  that  SKM  is  not  only  helpful  in  revealing 

 mechanisms  in  complex  pathways  for  a  single  target,  but  also  can  be  used  to  identify 
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 Stress Knowledge Map 

 regulators  using  a  large  number  of  targets,  as  is  commonly  the  case  with  interpretation 

 of  large  omics  datasets.  Using  network  analyses,  arguably  the  simplest  qualitative 

 modelling  approach,  we  identified  hubs  involved  in  complex  redox  -  Ca  2+  signalling 

 interconnectedness.  By  identifying  connections  from  known  Ca  2+  related  proteins  to  our 

 experimentally  derived  target  list,  we  were  able  to  prioritise  certain  processes  and 

 hypotheses  in  an  informed  manner.  One  of  the  SKM-tools  features,  the  CUT-tool,  was 

 designed  to  help  in  the  next  step  of  research:  validation  of  generated  hypotheses.  It 

 allows  for  the  design  of  complex  functional  validation  experiments  (e.g.  gene  knock-out 

 or  overexpression)  identifying  the  genes  whose  activity  should  be  modulated  to  achieve 

 a  desired  effect,  taking  network  redundancy  into  account.  Overall,  in  both  case  studies, 

 SKM  proved  to  be  a  useful  generator  of  potential  mechanistic  explanations  of  the 

 observed data. 

 In  agriculture,  plant  digital  twins,  as  virtual  replicas  of  physical  systems,  are 

 expected  to  provide  a  revolutionary  platform  for  modelling  the  effect  of  crop 

 management  systems  and  environmental  changes  (Pylianidis  et  al.  ,  2021).  Digital  twins 

 can  be  used  to  perform  in  silico  experiments  that  guide  or  replace  lab  and  field 

 experiments.  The  detail  that  digital  twins  provide,  combined  with  fast  computational 

 methodologies,  allows  for  efficient  planning  of  experiments  and  will  thus  speed  up  our 

 understanding  of  plant  functioning  and  provide  information  for  more  effective 

 breeding.  Aside  from  being  a  tool  for  the  interpretation  of  experimental  data,  SKM  also 

 provides  a  starting  point  for  the  integration  of  stress  signalling  and  growth  tradeoffs  in 

 digital twins. 
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 Stress Knowledge Map 

 SKM  will  be  continuously  updated,  keeping  abreast  of  the  latest  developments 

 in  the  field.  We  believe  the  integrated  knowledge  in  SKM  will  help  in  understanding  of 

 plant  interactions  with  the  environment,  by  enabling  exploration  of  knowledge  and  by 

 supporting  diverse  mechanistic  modelling  approaches.  This  is  of  interest  to  the  wider 

 plant  scientific  community,  enabling  the  informed  design  of  experiments  and,  in  the 

 long term, contributing to the breeding of improved varieties and precision agriculture. 

 Methods 

 PSS construction 

 From  the  predecessor  model  (“PIS-v2”,  Ramšak  et  al.  ,  2018),  numerous 

 improvements,  additions,  and  reformulations  were  carried  out,  resulting  in  the  current 

 PSS.  In  addition  to  intracellular  pathogens  (potyviruses),  we  extended  PSS  to  also 

 contain  perception  of  extracellular  pathogens  (  Pseudomonas  sp.)  and  insect  pests,  as  well 

 as  heat,  drought,  and  waterlogging  stress.  Downstream  of  perception,  PSS  now 

 includes  Ca  2+  signalling,  ROS  signalling,  the  MAPK  signalling  cascade,  as  well  as  the 

 synthesis  and  signalling  of  all  major  phytohormones.  We  also  added  the  synthesis  of 

 actuator  molecules  and  processes,  as  well  as  known  regulators  of  growth  and  major 

 processes leading to growth. 

 PSS  is  implemented  as  a  Neo4j  graph  database.  The  types  of  nodes  and  edges 

 (relationships)  in  the  database  are  summarised  in  Supplementary  Table  5.  Genes  and 

 gene  products  are  represented  by  functional  cluster  nodes,  including  protein  and 

 noncoding  RNA  nodes.  Functional  clusters  allow  for  the  representation  of  genetic 

 redundancy.  These  groups  were  defined  using  sequence  similarity  between  genes 
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 Stress Knowledge Map 

 (orthologues  and  paralogues)  and  experimental  data  that  confirmed  functional  overlap. 

 The  functional  cluster  concept  includes  groupings  of  enzyme  coding  genes  (similarly  to 

 the  E.C.  number  system),  as  well  as  genes  involved  in  transcriptional  and  translational 

 regulation.  Groups  of  metabolites  with  the  same  biological  function  are  also 

 represented  as  metabolite  families.  Nodes  also  include  more  abstract  entities,  such  as 

 known  but  unidentified  gene  products  and  plant  processes.  Finally,  foreign  entities, 

 such as biotic or abiotic stressors are also included as nodes. 

 In  addition  to  biological  entities,  molecular  interactions  are  also  represented  by 

 nodes  in  PSS,  and  are  categorised  into  ten  formal  reaction  types  (e.g.  protein  activation 

 or  catalysis,  Supplementary  Table  5).  Reaction  participant  nodes  are  connected  to  the 

 reaction  nodes  by  relationships,  with  the  type  of  relationship  representing  the  role  of 

 the  participant  (e.g.  SUBSTRATE,  ACTIVATES),  as  demonstrated  in  Fig.  2B.  These 

 relationships  are  annotated  with  the  subcellular  location  and  the  form  of  the  participant 

 when involved in the reaction (e.g. ‘cytoplasm’ or ‘nucleus’ and ‘gene’ or ‘protein’). 

 Where  applicable,  nodes  are  annotated  with  their  provenance  (e.g.  a  DOI)  and 

 additional  information  such  as  biological  pathways,  gene  identifiers,  descriptions  and 

 annotations  (TAIR  (Berardini  et  al  .,  2015),  GoMapMan  (Ramšak  et  al  .,  2014)),  references 

 to  external  resources  (DOI,  PubMed,  KEGG  (Kanehisa  et  al  .,  2016),  MetaCyc  (Caspi  e  t 

 al  .,  2016),  AraCyc  (Mueller  et  al  .,  2003),  and  ChEBI  (Hastings  et  al.  ,  2016)),  and 

 explanatory  statements  (such  as  a  quote  from  the  article  and  the  experimental 

 techniques used in the original experiments). 
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 Stress Knowledge Map 

 All  updates  to  PSS  are  immediately  available  in  the  various  interfaces  and  all 

 download  formats.  A  frozen  version  (PSS  v1.0.0)  is  also  available  in  all  export  formats 

 and  additionally,  a  database  dump  with  detailed  deployment  instructions  can  be 

 accessed  at  GitHub  (  https://github.com/NIB-SI/skm-neo4j  ).  All  sources  and  resources 

 used to create PSS v1.0.0 are available in Supplementary Table 6. 

 PSS  is  available  in  a  number  of  systems  biology  standard  formats,  including 

 SBML  (using  libSBML  (Bornstein  et  al  .,  2008)),  SBGN  (using  libSBGN  (König,  2020)  and 

 pySBGN  (Podpečan,  2023)  libraries),  DOT  (using  pygraphviz  (Aric  Hagberg  et  al  .)  and 

 pydot  (Sebastian  Kalinowski  et  al.  ,  2023)),  and  a  Boolean  formulation  in  boolnet  format. 

 SKM  also  supplies  several  generalised  formats  of  PSS  in  SIF/TSV  format,  allowing 

 multiple formulations of the network model. 

 CKN construction 

 The  second  edition  of  the  comprehensive  knowledge  network  (CKN-v2)  was 

 created  by  merging  pairwise  interactions  from  25  public  resources  (details  in 

 Supplementary  Table  2).  Additional  filtering  was  performed  on  the  STRING  v11.5 

 network  (Szklarczyk  et  al  .,  2023),  where  the  requirement  was  to  only  include  physical 

 interactions,  confirmed  by  experimental  data  or  existence  in  a  database.  As  Table  2 

 summarises,  five  reliability  ranks  were  designed  to  describe  the  reliability  of  the 

 interactions,  across  the  diversity  of  the  various  sources.  All  interactions  were  then 

 integrated,  resulting  in  a  single  network  of  574,538  interactions.  The  network  was 

 subsequently  condensed  by  collapsing  multiple  interactions  of  the  same  type  between  a 

 pair  of  interactors  into  a  single  edge.  In  this  process,  the  highest  ranked  interaction  took 
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 Stress Knowledge Map 

 precedence  to  define  the  interaction  type,  but  all  sources  that  contain  any  interaction 

 between the pair were retained in the edge attributes. 

 All  gene  loci  nodes  were  annotated  using  Araport11  (Cheng  et  al.  ,  2017) 

 downloaded  from  TAIR  in  June  2023  (Berardini  et  al.  ,  2015).  Gene  loci  that  have  been 

 merged  or  made  obsolete  were  renamed  or  removed  respectively.  Genes  are  also 

 annotated  with  Plant  Ontology  annotations  from  TAIR  (Berardini  et  al  .,  2015)  (based  on 

 gene  expression  patterns  reported  in  publications),  enabling  the  extraction  of  tissue 

 specific interaction networks. 

 CKN-v2  is  available  as  part  of  the  SKM  application  and  on  the  downloads  page 

 (  https://skm.nib.si/downloads/  ). 

 SKM Environment 

 The  SKM  web  application  is  implemented  in  Python  using  the  microframework 

 Flask.  The  interactive  visualisations  of  PSS  and  CKN  are  based  on  Biomine  Explorer 

 (Podpečan  et  al  .,  2019),  implemented  using  vis.js  and  open-source  Python  libraries 

 (including  networkX  (Hagberg  et  al  .,  2008)  and  graph-tools  (Peixoto,  2014)),  and  are 

 freely  available  on  GitHub  at  https://github.com/NIB-SI/ckn_viz  and 

 https://github.com/NIB-SI/pss_viz  respectively.  The  mechanistic  interface  to  PSS  is 

 provided  through  an  instance  of  the  Newt  Editor(Balci  et  al  .,  2021),  utilising  the  SBGN 

 standard. 
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 SKM-tools 

 SKM-tools  (  https://github.com/NIB-SI/skm-tools  )  is  a  collection  of  Python 

 scripts  and  notebooks,  incorporating  network  analysis  and  visualisation  tools,  that 

 facilitates  interrogation  of  CKN  and  PSS  with  targeted  questions  beyond  the  scope  of 

 the  web  application.  Included  functionalities  are  described  in  Table  4.  The  tools  are 

 developed  using  the  networkX  (Hagberg  et  al  .,  2008)  and  py4cytoscape  (Keiichiro  Ono 

 et al  .) libraries. 

 The  CUT-tool  utilises  the  max-flow  min-cut  (Edmonds-Karp  (Edmonds  and 

 Karp,  1972))  algorithm,  which  determines  the  minimum  edges  that  are  necessary  to  be 

 severed  (“cut  set”)  in  order  to  separate  the  upstream  sources  from  downstream  targets. 

 A  max-flow  min-cut  analysis  of  multiple  sources  to  an  individual  target  reveals  the 

 minimum  cut  set  to  disrupt  all  signalling  to  the  target.  In  order  to  calculate  the 

 max-flow  min-cut  across  multiple  sources,  a  dummy  node  connected  with  arbitrarily 

 high  capacity  to  all  original  sources  is  introduced,  and  the  calculation  done  using  the 

 dummy node as the source. 

 Case studies 

 Promoter analysis 

 Predicted  cis-regulatory  motifs  within  the  1kbp  promoter  sequence  of  At  RD29A 

 and  St  RD29  were  identified  via  the  Atcis-database  of  the  Arabidopsis  Gene  Regulatory 

 Information  Server  (AGRIS)  (Lichtenberg  et  al  .,  2009).  In  addition  we  used  PlantPAN  3.0 
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 (Chow  et  al  .,  2019)  to  identify  St  RD29  specific  motifs  which  were  not  previously 

 identified in At  RD29A  . 

 Plant material and growth conditions 

 Solanum  tuberosum  (cv.  Désirée)  plants  were  propagated  by  cuttings  from  sterile 

 grown  plants.  After  7  days  of  sterile  growth  on  ½  MS-Media  (pH  5.7,  2  (w/v)  % 

 sucrose)  to  initiate  root  growth,  plantlets  were  transferred  into  single  pots  filled  with 

 soil  (9  parts  soil,  1  part  perligran).  Arabidopsis  thaliana  (ecotype  Col-0)  seeds  were 

 directly  sown  on  soil  and  transferred  into  single  pots  after  4-6  days.  For  all  experiments, 

 leaves  were  used  from  18-21  days  old  plants  grown  in  climatized  chambers  (20  ±  2  °C) 

 under  long-day  conditions  (16  h  light/8  h  dark)  with  a  light  intensity  of  120  μmol 

 photons m  -2  s  -1  (Philips TLD 18W alternating 830/840  light colour temperature). 

 For  promoter  reporter  assays  of  transiently  transformed  N.  benthamiana  leaves, 

 seeds  were  germinated  on  pProfi-substrate  (Gramoflor).  Five  days  after  germination, 

 seedlings  were  separated  into  15.5  cm  diameter  x  12  cm  height  pots  of  15.5  cm  diameter 

 x  12  cm  height  filled  with  substrate  (3  parts  profi-substrate,  1  part  vermiculite,  1.5  kg 

 osmocote  start  per  m³).  Plants  were  grown  in  a  greenhouse  under  long  day  conditions 

 (16h  light  at  28  °C/8  h  dark  at  22  °C)  at  an  average  light  intensity  of  ~250  µE  and  80% 

 relative humidity. 

 Soltu.DM.03G017570  was  identified  as  the  orthologous  locus  of  Arabidopsis 

 RD29A  in  S.  tuberosum  cultivar  DM1-3  using  the  DM  v6.1  database 

 (  http://spuddb.uga.edu/  ).  To  generate  the  gene  reporter  lines  in  the  potato  cv.  Désirée, 

 1158  bps  of  the  5'  UTR  directly  upstream  of  the  start  codon  region  were  amplified  by 
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 PCR  and  either  the  firefly  luciferase  (fluc)  or  the  mscarletI  (  mScar  )  gene  in  a  custom 

 variant  of  the  pBIB  Hyg  vector  carrying  a  hygromycine  resistance  for  selection  in 

 plants.  The  complete  sequences  of  both  vectors  including  annotations  can  be  found  in 

 Supplementary  Figure  3  .  Both  constructs  were  introduced  into  the  potato  cultivar 

 Désirée as described previously (Rocha-Sosa  et al  ., 1989). 

 Plate-reader based luciferase assays 

 Agrobacteria  carrying  the  pBIN-StRD29::fluc  or  pBIN-AtRD29A::fluc  plasmid 

 were  grown  in  LB  liquid  medium  supplemented  with  the  respective  antibiotics. 

 Overnight  cultures  were  diluted  to  OD600  =  0.1  with  fresh  LB  medium  and  grown  to 

 OD600  =  0.8.  Cells  were  harvested  by  centrifugation  (22°C,  15  min  4000g)  and 

 resuspended  in  5%  sucrose  solution  in  H  2  O  to  an  OD600  =  0.2.  The  agrobacteria 

 suspension  was  infiltrated  into  leaves  #6,  #7  and  #8  of  four  week  old  N.  benthamiana 

 plants.  Care  was  taken  that  the  N.  benthamiana  plants  selected  for  infiltration  and 

 measurement  were  not  suffering  an  obvious  pathogen  attack  before  infiltration,  during 

 the  transformation  period,  hormone  treatment  and  measurement.  After  48  hours,  leaf 

 discs  (ø  6  mm)  of  infiltrated  plants  were  transferred  into  96  well  plates  containing  100  µl 

 buffered  MS  (5  mM  MES,  pH  5.8)  supplemented  with  1  %  sucrose  (w/v)  and  incubated 

 for  2  hours  under  greenhouse  growth  conditions.  Immediately  before  measurement, 

 luciferin,  to  a  final  concentration  of  30µM  and  the  hormones,  to  the  final  concentration 

 indicated  in  the  text,  were  added  into  each  respective  well.  For  all  combinatorial 

 hormone  treatments  the  different  hormones  were  applied  at  the  same  time  to  the 

 indicated  final  concentrations.  Fluc-luminescence  was  recorded  in  a  multi-mode 

 microplate  reader  (TECAN  spark  multimode  microplate  reader,  Serial  number: 

 2301004717)  in  a  window  from  550  nm  to  700  nm,  for  2  seconds  every  5  min  for  each 
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 well.  During  the  measurement  period  the  leaf  discs  were  kept  in  darkness  and  at  a 

 constant temperature of 22 °C. 

 For  luminescence  measurements  on  S.  tuberosum  St  RD29  ::fluc  plants,  leaf  discs  (ø 

 6  mm)  were  placed  in  a  96-well  plates  containing  100  μl  of  30  μM  luciferin  dissolved  in 

 ½  MS  After  2  hours  of  preincubation,  the  solution  was  replaced  by  100  µl  of  30  µM 

 luciferin  containing  various  effectors  (50  µM  ABA,  50  µM  MeJA  or  mix  of  both)  and 

 luminescence  was  measured  every  5  min  for  up  to  12  hours  using  aTriStar2  lb  492 

 multimodereader  (Berthold  Technologies  GmbH,  Germany).  During  the  measurement 

 period  the  leaf  discs  were  kept  in  darkness.  All  luminescence  analysis  was  performed 

 with  at  least  5  independent  experimental  replicates.  Luminescence  data  is  available  in 

 Supplementary Table 3 and Supplementary Table 7. 

 Transcript analysis 

 For  St  RD29  and  At  RD29A  transcript  analysis,  S.  tuberosum  or  A.  thaliana  plants 

 were  treated  with  water  (mock),  50  µM  ABA,  50  µM  MeJA  or  combination  of  both  for  6 

 hours  in  3-4  independent  biological  replicates.  Total  RNA  was  extracted  from  100  mg 

 leaf  material  using  the  Gene  Matrix  Universal  RNA  Purification  Kit  (Roboklon, 

 Germany)  according  to  the  manufacturer's  instructions.  RNA  integrity  was  assessed  by 

 agarose  electrophoresis  and  RNA  quantity  and  purity  by  UV/VIS  spectrophotometer 

 (Eppendorf,  Germany).  For  quantitative  real-time  PCR  (qRT-PCR)  analysis,  RNA  was 

 transcribed  into  cDNA  using  the  RevertAid  First  Strand  cDNA  Synthesis  Kit  (Thermo 

 Scientific, Germany). The reaction was stopped by 5 min incubation at 75 °C. 
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 Where  applicable,  all  primers  were  designed  to  span  exon–intron  borders  using 

 QUANTPRIME  (Arvidsson  et  al  .,  2008)  (gene  identifiers  and  primer  sequences  in 

 Supplementary  Table  8).  qRT-PCR  was  performed  with  three  technical  replicates  for 

 each  sample  in  96  well  plates  using  a  CFX96  real-time  thermal  cycler  system  (Bio-Rad, 

 Germany).  Each  reaction  contained  1x  SYBR-green  master  mix  (Thermo  Fisher),  2  ng/µl 

 cDNA  and  10  µM  each  of  the  respective  forward  +  reverse  primer.  The  specificity  of 

 each  product  was  assessed  based  on  the  melting  curves  after  40  cycles  of  amplification. 

 All  transcript  levels  were  normalised  against  the  geometric  mean  of  the  transcript 

 abundances  of  the  reference  genes  YLS8  and  CYP5  for  Arabidopsis  and  YLS8  and  ACT7 

 for  potato.  Target  relative  copy  numbers  were  calculated  using  quantGenius  (Baebler  et 

 al  ., 2017) (  http://quantgenius.nib.si/  ), provided in Supplementary Table 9. 

 PSS network analysis 

 We  identified  the  pathway  between  ABA  and  RD29  by  querying  for  all  directed 

 shortest  paths  from  ABA  to  RD29  in  the  reaction  participant  bipartite  projection  of  PSS. 

 We  then  extracted  all  directed  shortest  paths  from  JA  and  SA  to  RD29  that  partially 

 overlapped  with  the  ABA  to  RD29  path.  For  added  context  to  these  results,  we 

 expanded  the  network  induced  by  the  shortest  paths  to  include  the  first  neighbours  of 

 all nodes (Fig. 3E). 

 Analysis  was  performed  in  Python  using  the  networkx  (Hagberg  et  al.  ,  2008) 

 library  and  visualised  in  Cytoscape  (Cline  et  al.  ,  2007)  using  the  py4cytoscape  (Keiichiro 

 Ono  et  al  .)  library.  All  code  is  available  in  the  SKM-tools  repository 

 (  https://github.com/NIB-SI/skm-tools  ). 
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 Proteomic analysis 

 Complete  rosettes  of  three-week-old  A.  thaliana  plants  were  incubated  in  1  mM 

 LaCl  3  solution  or  ddH  2  O  for  1  hour.  Afterwards,  plants  were  transferred  into  either  20 

 mM  H  2  O  2  or  into  ddH  2  O  and  harvested  after  10-  and  30-min  incubation,  respectively. 

 Complete  rosettes  of  12  plants  per  treatment  were  pooled  and  immediately  frozen  in 

 liquid  nitrogen.  Frozen  plant  material  was  homogenised  using  a  pre-cooled  mortar  and 

 pestle  and  stored  at  -80  °C.  For  peptide  isolation,  500  mg  frozen  plant  material  was 

 mixed  with  2  ml  lacus-buffer  (20  mM  Tris  pH  7.7,  80  mM  NaCl,  0.75  mM  EDTA,  1  mM 

 CaCl  2  ,  5  mM  MgCl  2  ,  1  mM  DTT,  1/200  mM  NaF)  containing  4  tablets  of  protease 

 inhibitor  (Roche  cOmplete,  EDTA-free,  Protease  inhibitor  cocktail  tablets)  and  10  tablets 

 of  phosphatase  inhibitor  (Roche  PhosSTOP™)  per  200ml.  Samples  were  incubated  for 

 10  min  on  ice  and  subsequently  centrifuged  at  15.000  g  for  10  min  at  4  °C.  The 

 supernatant  was  transferred  into  a  new  tube,  adjusted  to  20%  (v/v)  trichloroacetic  acid 

 and  incubated  overnight  at  -20  °C.  The  precipitated  samples  were  stored  until 

 preparation for mass-spec analysis. 

 Samples  were  centrifuged  at  15.000  g,  vacuum-dried  and  eluted  in  urea  lysis 

 buffer  (8  M  urea,  150  mM  NaCl  and  40  mM  Tris-HCl  pH  8).  Protein  concentration  was 

 determined  via  BCA-assay  (Thermo  Fisher).  In  total,  3  mg  of  protein  per  sample  were 

 first  reduced  in  5  mM  DTT  and  subsequently  alkylated  in  15  mM  iodoacetamide  for  30 

 min  at  room  temperature  in  the  dark.  The  alkylated  samples  were  quenched  by  adding 

 DTT  to  final  concentration  of  5  mM  and  mixed  with  30  mg  Sera-Mag 

 carboxylate-modified  magnetic  beads  (1:1  ratio  of  hydrophilic  and  hydrophobic  beads, 

 Cytiva,  USA).  The  peptides  attached  to  the  beads  were  washed  four  times  with  80% 
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 (v/v)  ethanol  and  digested  in  a  30  mM  ammonium  bicarbonate  buffer  (pH  8.2) 

 containing  30  µg  trypsin  (Promega,  Wisconsin,  USA).  Tryptic  digestion  was  performed 

 overnight  at  37  °C  under  constant  shaking.  The  digestion  was  stopped  by  the  addition 

 of  formic  acid  (end-concentration  of  4%).  In  total,  100  µg  of  the  digested  peptides  per 

 sample  were  transferred  into  a  new  reaction  tube,  vacuum-dried  and  stored  at  -20  °C 

 until HPLC-MS/MS analysis. 

 The  purified  tryptic  peptides  were  dissolved  in  0.1%  (v/v)  formic  acid  in  high 

 purity  water.  Approximately  1  µg  of  peptides  were  separated  by  an  online 

 reversed-phase  HPLC  (Thermo  Scientific  Dionex  Ultimate  3000  RSLC  nano  LC  system) 

 connected  to  a  benchtop  Quadrupole  Orbitrap  (Q-Exactive  Plus)  mass  spectrometer 

 (Thermo  Fisher  Scientific).  The  separation  was  carried  on  an  Easy-Spray  analytical 

 column  (PepMap  RSLC  C18,  2  μm,  100  Å,  75  μm  i.d.  ×  50  cm,  Thermo  Fisher  Scientific) 

 with  an  integrated  emitter,  and  the  column  was  heated  to  55°C.  The  LC  gradient  was  set 

 to  a  140-min  gradient  method,  with  a  flow  rate  of  300  nL/min.  The  LC  gradient  was  set 

 to  5  -  50%  buffer  B  (v/v)  [79.9%  ACN,  0.1%  formic  acid,  20%  Ultra  high  purity  (MilliQ)] 

 for 125 min, and then to 80% buffer B over 5 min. 

 LC  eluent  was  introduced  into  the  mass  spectrometer  through  an  Easy-Spray  ion 

 source  (Thermo  Scientific),  with  the  emitter  operated  at  1.9  kV.  The  mass  spectra  were 

 measured  in  positive  ion  mode  applying  a  top  fifteen  data-dependent  acquisition 

 (DDA).  A  full  mass  spectrum  was  set  to  70,000  resolution  at  m/z  200  [Automatic  Gain 

 Control  (AGC)  target  at  1e6,  maximum  injection  time  (IT)  of  120  ms  and  a  scan  range 

 400-1600  (m/z)].  The  MS  scan  was  followed  by  a  MS/MS  scan  at  17,500  resolution  at 

 m/z  200  (AGC  target  at  5e4,  1.6  m/z  isolation  window,  and  maximum  IT  of  80  ms).  For 
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 MS/MS  fragmentation,  normalised  collision  energy  (NCE)  for  higher  energy  collisional 

 dissociation  (HCD)  was  set  to  27%.  Dynamic  exclusion  was  set  at  40  s,  and  unassigned 

 and  +1,  +7,  +8,  and  >  +8  charged  precursors  were  excluded.  The  intensity  threshold  was 

 set  to  6.3e3,  and  isotopes  were  excluded.  The  analysis  was  performed  with  5 

 independent experimental replicates for each sample. 

 Peptide identification and quantification 

 Identities  and  peptide  features  were  defined  by  the  peptide  search  engine 

 Adromeda,  which  was  provided  by  the  MaxQuant-software  (Version  2.1.3.0,  Max 

 Planck  Institute  of  Biochemistry)  using  standard  settings  (Tyanova  et  al  .,  2016b).  In 

 detail,  trypsin  based  digestion  of  the  peptides  with  up  to  two  missing  cleavage  sites 

 were  selected.  Methinonine-oxidation  as  well  as  N-terminal  acetylation  was  set  as 

 variable  modifications  for  peptide  identification.  In  total,  up  to  three  potential 

 modification  sites  per  peptide  were  accepted.  The  identified  peptide  sequences  were 

 searched  and  aligned  against  the  Araport11  (Cheng  et  al  .,  2017)  reference  protein 

 database.  The  FDR  cut-off  for  protein  identification  and  side  identification  was  set  to 

 0.01.  The  minimum  peptide  length  was  7  AA  and  the  maximum  length  was  40  AA.  For 

 each  identified  protein  group,  label-free  quantitation  intensities  were  calculated  and 

 used for further analysis (Supplementary Table 4). 

 Potential  contaminants  and  reverse  sequenced  peptides  were  removed  before 

 statistical  analysis.  Only  proteins  that  were  detected  in  at  least  three  out  of  five 

 replicates  in  at  least  one  treatment  group  were  considered  for  statistical  analysis,  which 

 was  performed  using  the  Perseus  (Version  2.0.7.0)  (Tyanova  et  al  .,  2016a).  Missing 

 values  were  replaced  by  sampling  from  a  normal  distribution  using  the  default  settings. 
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 Protein  groups  with  an  absolute  fold  change  of  above  1.5  compared  to  the  control  and  a 

 FDR  value  below  0.05  were  considered  as  significantly  regulated  (Supplementary  Table 

 4). 

 To  filter  for  Ca  2+  -regulated  proteins,  significantly  up  (down)  regulated  proteins  in 

 La  3+  +  H  2  O  2  compared  to  La  3+  only  treated  samples  were  subtracted  from  the  list  of 

 significantly  up  (down)  regulated  proteins  in  H  2  O  2  treated  samples.  An  additional 

 filtering  step  was  performed  to  ensure  a  compelling  difference  in  abundance  between 

 the  two  contrasts.  This  required  that  abs(L  1  -  L  2  )  ≥  1  ,  where  L  1  =  log  fold  change  for  H  2  O  2 

 vs  mock  and  L  2  =  log  fold  change  for  La  3+  +  H  2  O  2  treatment  vs  La  3+  only.  For  each  of  the 

 protein  groups  that  passed  the  filters,  we  extracted  all  identifiers  in  the  group.  For 

 identifiers  which  occurred  in  multiple  groups,  we  removed  the  identifier  from  the 

 group where it occurred the least. 

 CKN network analysis 

 For  each  Ca  2+  -dependent  redox-responsive  protein  group  (target),  we  identified 

 the  closest  nodes  upstream  that  have  a  known  Ca  2+  signalling  association  (source).  This 

 was  done  by  identifying  all  shortest  paths  in  CKN  with  the  source  nodes  set  as  all  genes 

 with  Ca  2+  signalling  related  GoMapMan  (Ramšak  et  al  .,  2014)  annotations  and  the  target 

 set  as  the  Ca  2+  dependent  H  2  O  2  responsive  peptides.  The  GoMapMan  annotations 

 considered  were  '30.3  -  signalling.calcium',  '34.21  -  transport.calcium',  and  '34.22  - 

 transport.cyclic  nucleotide  or  calcium  regulated  channels'.  For  each  target,  we  kept  the 

 source(s)  with  the  shortest  paths  to  the  target  (the  “closest”  upstream  potential  Ca  2+ 

 interactors).  We  used  the  CUT-tool  on  the  merged  network  to  determine  the  cut  set 
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 between  all  the  source  nodes  and  each  target.  The  capacity  on  the  edges  was  set  as  the 

 edge rank + 1 (highly ranked edges are more likely to be in the cut set). 

 All  source  and  target  nodes  are  listed  in  Supplementary  Table  4.  Analysis  was 

 performed  in  Python  using  the  networkx  (Hagberg  et  al  .,  2008)  library  and  visualised  in 

 Cytoscape  (Cline  et  al  .,  2007)  using  the  py4cytoscape  (Keiichiro  Ono  et  al  .)  library.  All 

 code is available in the SKM-tools repository (  https://github.com/NIB-SI/skm-tools  ). 

 Gene identifiers 

 All  genes  mentioned  in  the  article  are  listed  with  their  gene  identifiers  in 

 Supplementary Table 10. 
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 Supplementary information 

 Name  File name  Description 

 Supplementary 
 Table 1 

 S01_SupplementaryTable1_ComparativeResources.xlsx  A non-exhaustive list of complementary, 
 comparative, and integrated resources of SKM. 

 Supplementary 
 Table 2 

 S02_SupplementaryTable2_CKNv2-sources.xlsx  List of sources of CKN-v2 interactions. 

 Supplementary 
 Figure 1 

 S03_SupplementaryFigure1_MotifsAtRD29A-StRD29.pdf  Visualisation of abiotic stress related 
 cis-regulatory binding motifs for At  RD29A  and 
 St  RD29  . 

 Supplementary 
 Figure 2 

 S04_SupplementaryFigure2_ABA-response-of-StRD29.pd 
 f 

 Microscopic (CLSM)  analyses of ABA 
 response of St-RD29::mScarletI, showing that 
 ABA activates St-RD29::mScarletI in stomata of 
 potato plants. 

 Supplementary 
 Table 3 

 S05_SupplementaryTable3_Luminescence-RD29-synergist 
 ic.xlsx 

 Luminescence data for case study 1 showing 
 StRD29 expression induction by ABA, and 
 validation of the hypothesis of synergistic 
 activity of combinatorial jasmonates and SA in 
 attenuation of expression. 

 Supplementary 
 Data 1 

 S06_SupplementaryData1_Case-studies-Cytoscape.cys  Case study 1 (PSS) and Case study 2 (CKN) 
 network analysis results provided in a 
 Cytoscape session. 

 Supplementary 
 Table 4 

 S07_SupplementaryTable4_Case-study-2-Proteomics- 
 and-CKN-analysis.xlsx 

 Case study 2 proteomics data, processed 
 proteomics data, gene descriptions, and CKN 
 network analysis results. 

 Supplementary 
 Table 5 

 S08_SupplementaryTable5_PSS-schema.xlsx  PSS database schema description. 

 Supplementary 
 Table 6 

 S09_SupplementaryTable6_PSS-sources.xlsx  List of sources of PSS v1.0.0 interactions. 

 Supplementary 
 Table 7 

 S10_SupplementaryTable7_Luminescence-RD29.xlsx  Luminescence data for case study 1 showing 
 St  RD29  expression induced by ABA, 
 attenuated by addition of jasmonates or SA. 

 Supplementary 
 Figure 3 

 S11_SupplementaryFigure3_Vector-StRD29-fluc-and-StR 
 D29-mScarletI.pdf 

 Visualisation of the features of Vector pBibHyg 
 carrying StRD29::fluc and StRD29::mScarletI. 

 Supplementary 
 Table 8 

 S12_SupplementaryTable8_Primer-sequences.xlsx  Gene identifiers and primer sequences for 
 transcript analysis. 

 Supplementary 
 Table 9 

 S13_SupplementaryTable9_RD29-qPCR.xlsx  Relative gene expression of  RD29  in potato and 
 Arabidopsis after treatment with ABA, JA or 
 their combination. 

 Supplementary 
 Table 10 

 S14_SupplementaryTable10_Gene-identifiers.xlsx  Genes and gene identifiers mentioned in the 
 article. 
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